315 resultados para submillimeter: stars


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single layer, frequency selective surface based, sub-millimeter wave transmission polarizer is presented that converts incident slant linear 45° polarization into circular polarization upon transmission. The polarization convertor consists of a 30 mm diameter 10 thick silicon reinforced metalized screen containing 2700 resonator cells and perforated with nested split ring slot apertures. The screen was designed and optimized using CST Microwave Studio and predictions were validated experimentally by transmission measurements over the 250-365 GHz frequency range. This frequency range is used for remote environmental monitoring and 325 GHz represents a molecular emission line for H2O. The results obtained show good agreement between measured and modeled predictions. The measured 3 dB axial ratio bandwidth was 11.75%, measured minimum Axial Ratio was 0.19 dB and the measured insertion loss of the single layer screen was 3.38 dB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new photometric and spectroscopic observations of an unusual luminous blue variable (LBV) in NGC 3432, covering three major outbursts in 2008 October, 2009 April and 2009 November. Previously, this star experienced an outburst also in 2000 (known as SN 2000ch). During outbursts the star reached an absolute magnitude between -12.1 and -12.8. Its spectrum showed H, He I and Fe II lines with P-Cygni profiles during and soon after the eruptive phases, while only intermediate-width lines in pure emission (including He II lambda 4686) were visible during quiescence. The fast-evolving light curve soon after the outbursts, the quasi-modulated light curve, the peak magnitude and the overall spectral properties are consistent with multiple episodes of variability of an extremely active LBV. However, the widths of the spectral lines indicate unusually high wind velocities (1500-2800 km s-1), similar to those observed in Wolf-Rayet stars. Although modulated light curves are typical of LBVs during the S-Dor variability phase, the luminous maxima and the high frequency of outbursts are unexpected in S-Dor variables. Such extreme variability may be associated with repeated ejection episodes during a giant eruption of an LBV. Alternatively, it may be indicative of a high level of instability shortly preceding the core-collapse or due to interaction with a massive, binary companion. In this context, the variable in NGC 3432 shares some similarities with the famous stellar system HD 5980 in the Small Magellanic Cloud, which includes an erupting LBV and an early Wolf-Rayet star.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using images from the Hubble Space Telescope and the Gemini Telescope, we confirmed the disappearance of the progenitors of two type II supernovae (SNe) and evaluated the presence of other stars associated with them. We found that the progenitor of SN 2003gd, an M-supergiant star, is no longer observed at the SN location and determined its intrinsic brightness using image subtraction techniques. The progenitor of SN 1993J, a K-supergiant star, is also no longer present, but its B-supergiant binary companion is still observed. The disappearance of the progenitors confirms that these two supernovae were produced by red supergiants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-mag early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 ± 0.03 MJup and radius of 1.32 ± 0.08 RJup. The host star, WASP-26, has a mass of 1.12 ± 0.03 M? and a radius of 1.34 ± 0.06 R? and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 ± 15 pc and an age of 6 ± 2 Gy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We announce the discovery of a new low-mass, pre-main sequence eclipsing binary, MML 53. Previous observations of MML 53 found it to be a pre-main sequence spectroscopic multiple associated with the 15-22 Myr Upper Centaurus-Lupus cluster. We identify the object as an eclipsing binary for the first time through the analysis of multiple seasons of time series photometry from the SuperWASP transiting planet survey. Re-analysis of a single archive spectrum shows MML 53 to be a spatially unresolved triple system of young stars which all exhibit significant lithium absorption. Two of the components comprise an eclipsing binary with period, P = 2.097891(6) ± 0.000005 and mass ratio, q ~ 0.8. Here, we present the analysis of the discovery data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Hot-Jupiter planets must form at large separations from their host stars where the temperatures are cool enough for their cores to condense. They then migrate inwards to their current observed orbital separations. Different theories of how this migration occurs lead to varying distributions of orbital eccentricity and the alignment between the rotation axis of the star and the orbital axis of the planet. Aims: The spin-orbit alignment of a transiting system is revealed via the Rossiter-McLaughlin effect, which is the anomaly present in the radial velocity measurements of the rotating star during transit due to the planet blocking some of the starlight. In this paper we aim to measure the spin-orbit alignment of the WASP-3 system via a new way of analysing the Rossiter-McLaughlin observations. Methods: We apply a new tomographic method for analysing the time variable asymmetry of stellar line profiles caused by the Rossiter-McLaughlin effect. This new method eliminates the systematic error inherent in previous methods used to analyse the effect. Results: We find a value for the projected stellar spin rate of v sin i = 13.9 ± 0.03 km s-1 which is in agreement with previous measurements but has a much higher precision. The system is found to be well aligned, with ? = 5-5+6° which favours an evolutionary history for WASP-3b involving migration through tidal interactions with a protoplanetary disc. From comparison with isochrones we put an upper limit on the age of the star of 2 Gyr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SuWt 2 is a planetary nebula (PN) consisting of a bright ionized thin ring seen nearly edge-on, with much fainter bipolar lobes extending perpendicularly to the ring. It has a bright (12th magnitude) central star, too cool to ionize the PN, which we discovered in the early 1990s to be an eclipsing binary. Although it was anticipated that there would also be an optically faint, hot, ionizing star in the system, a spectrum from the International Ultraviolet Explorer (IUE) did not reveal a UV source. We present extensive ground-based photometry and spectroscopy of the central binary collected over the ensuing two decades, resulting in the determination that the orbital period of the eclipsing pair is 4.9 days, and that it consists of two nearly identical A1 V stars, each of mass ~2.7 M sun. The physical parameters of the A stars, combined with evolutionary tracks, show that both are in the short-lived "blue-hook" evolutionary phase that occurs between the main sequence and the Hertzsprung gap, and that the age of the system is about 520 Myr. One puzzle is that the stars' rotational velocities are different from each other, and considerably slower than synchronous with the orbital period. It is possible that the center-of-mass velocity of the eclipsing pair is varying with time, suggesting that there is an unseen third orbiting body in the system. We propose a scenario in which the system began as a hierarchical triple, consisting of a ~2.9 M sun star orbiting the close pair of A stars. Upon reaching the asymptotic giant branch stage, the primary engulfed the pair into a common envelope, leading to a rapid contraction of the orbit and catastrophic ejection of the envelope into the orbital plane. In this picture, the exposed core of the initial primary is now a white dwarf of ~0.7 M sun, orbiting the eclipsing pair, which has already cooled below the detectability possible by IUE at our derived distance of 2.3 kpc and a reddening of E(B - V) = 0.40. The SuWt 2 system may be destined to perish as a Type Ia supernova.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery of a Saturn-sized planet transiting a V = 11.3, K4 dwarf star every 3.9 days. WASP-29b has a mass of 0.24 ± 0.02 M Jup and a radius of 0.79 ± 0.05 R Jup, making it the smallest planet so far discovered by the WASP survey, and the exoplanet most similar in mass and radius to Saturn. The host star WASP-29 has an above-solar metallicity and fits a possible correlation for Saturn-mass planets such that planets with higher-metallicity host stars have higher core masses and thus smaller radii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT We present the first detailed spatiokinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrow-band imaging in the light of [NII]6584Å, [OIII]5007 Å and [SII]6717+6731Å, obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionization structure of Abell 41. Long-slit observations of the Ha and [NII]6584Å emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro Mártir Telescope. These spectra, combined with the narrow-band imagery, were used to develop a spatiokinematical model of [NII]6584Å emission from Abell 41. The best-fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40 km s-1 at the waist. The symmetry axis of the model nebula is within 5° of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time, making it hard to distinguish between models. The obliquity of an orbit with respect to the stellar rotation axis is thought to be more stable than other parameters such as eccentricity. Most planets, to date, appear aligned with the stellar rotation axis; the few misaligned planets so far detected are massive (> 2 MJ). Aims: Our goal is to measure the degree of alignment between planetary orbits and stellar spin axes, to search for potential correlations with eccentricity or other planetary parameters and to measure long term radial velocity variability indicating the presence of other bodies in the system. Methods: For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle ß between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We used a combined analysis of photometry and radial velocities, fitting model parameters with the Markov Chain Monte Carlo method. After obtaining ß we attempt to statistically determine the distribution of the real spin-orbit angle ?. Results: We found that three of our targets have ß above 90°: WASP-2b: ß = 153°+11-15, WASP-15b: ß = 139.6°+5.2-4.3 and WASP-17b: ß = 148.5°+5.1-4.2; the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0°. We find no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All six orbits are close to circular, with only one firm detection of eccentricity e = 0.00848+0.00085-0.00095 in WASP-18b. No long-term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of ß and our six and transforming them into a distribution of ? we find that between about 45 and 85% of hot Jupiters have ? > 30°. Conclusions: Most hot Jupiters are misaligned, with a large variety of spin-orbit angles. We find observations and predictions using the Kozai mechanism match well. If these observational facts are confirmed in the future, we may then conclude that most hot Jupiters are formed from a dynamical and tidal origin without the necessity to use type I or II migration. At present, standard disc migration cannot explain the observations without invoking at least another additional process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several authors have shown that precise measurements of transit time variations of exoplanets can be sensitive to other planetary bodies, such as exo-moons. In addition, the transit timing variations of the exoplanets closest to their host stars can provide tests of tidal dissipation theory. These studies, however, have not considered the effect of the host star. There is a large body of observational evidence that eclipse times of binary stars can vary dramatically due to variations in the quadrupole moment of the stars driven by stellar activity. In this paper, we investigate and estimate the likely impact such variations have on the transit times of exoplanets. We find in several cases that such variations should be detectable. In particular, the estimated period changes for WASP-18b are of the same order as those expected for tidal dissipation, even for relatively low values of the tidal dissipation parameter. The transit time variations caused by the Applegate mechanism are also of the correct magnitude and occur on time-scales such that they may be confused with variations caused by light-travel time effects due to the presence of a Jupiter-like second planet. Finally, we suggest that transiting exoplanet systems may provide a clean route (compared to binaries) to constraining the type of dynamo operating in the host star.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All extra-solar planet masses that have been derived spectroscopically are lower limits since the inclination of the orbit to our line-of-sight is unknown except for transiting systems. In theory, however, it is possible to determine the inclination angle, i, between the rotation axis of a star and an observer's line-of-sight from measurements of the projected equatorial velocity (v sin i), the stellar rotation period (P(rot)) and the stellar radius (R(*)). For stars which host planetary systems this allows the removal of the sin i dependency of extra-solar planet masses derived from spectroscopic observations under the assumption that the planetary orbits lie perpendicular to the stellar rotation axis.
We have carried out an extensive literature search and present a catalogue of v sin i, P(rot) and R(*) estimates for stars hosting extra-solar planets. In addition, we have used Hipparcos parallaxes and the Barnes-Evans relationship to further supplement the R(*) estimates obtained from the literature. Using this catalogue, we have obtained sin i estimates using a Markov-chain Monte Carlo analysis. This technique allows proper 1 Sigma two-tailed confidence limits to be placed on the derived sin i's along with the transit probability for each planet to be determined.
While we find that a small proportion of systems yield sin i's significantly greater than 1, most likely due to poor P(rot) estimations, the large majority are acceptable. We are further encouraged by the cases where we have data on transiting systems, as the technique indicates inclinations of similar to 90 degrees and high transit probabilities. In total, we are able to estimate the true masses of 133 extra-solar planets. Of these 133 extra-solar planets, only six have revised masses that place them above the 13M(J) deuterium burning limit; four of those six extra-solar planet candidates were already suspected to lie above the deuterium burning limit before correcting their masses for the sin i dependency. Our work reveals a population of high-mass extra-solar planets with low eccentricities, and we speculate that these extra-solar planets may represent the signature of different planetary formation mechanisms at work. Finally, we discuss future observations that should improve the robustness of this technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting an m v = 12.7 G2-type dwarf, with a period of 3.577469 ± 0.000011 d, transit epoch T 0 = 2455338.6188 ± 0.0006 (HJD; dates throughout the paper are given in Coordinated Universal Time (UTC)), and a transit duration 0.1304+0.0018 –0.0017 d. The planetary companion has a mass M p = 1.80 ± 0.17 M J and radius R p = 1.16+0.07 –0.06 R J, yielding a mean density of 1.15+0.12 –0.15 ?J. From a spectral analysis, we find that the host star has M sstarf = 0.925 ± 0.120 M sun, R sstarf = 1.003 ± 0.053 R sun, T eff = 5800 ± 150 K, and [Fe/H] = –0.40 ± 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes similar to -21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by Ni-56, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.