249 resultados para signalling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

NO (nitric oxide) can affect mitochondrial function by interacting with the cytochrome c oxidase (complex IV) of the electron transport chain in a manner that is reversible and in competition with oxygen. Concentrations of NO too low to inhibit respiration can trigger cell defence response mechanisms involving reactive oxygen species and various signalling molecules such as nuclear factor kappa B and AMP kinase. Inhibition of mitochondrial respiration by NO at low oxygen concentrations can cause so-called metabolic hypoxia and divert oxygen towards other oxygen-dependent systems. Such a diversion reactivates prolyl hydroxylases and thus accounts for the prevention by NO of the stabilization of hypoxia-inducible transcription factor. In certain circumstances NO interacts with superoxide radical to form peroxynitrite, which can affect the action of key enzymes, such as mitochondrial complex I, by S-nitrosation. This chapter discusses the physiological and pathophysiological implications of the interactions of NO with the cytochrome c oxidase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bradykinin and related peptides are found in the defensive skin secretions of many frogs and toads. While the physiological roles of bradykinin-related peptides in sub-mammalian vertebrates remains obscure, in mammals, including humans, canonical bradykinin mediates a multitude of biological effects including the proliferation of many types of cancer cell. Here we have examined the effect of the bradykinin B2 receptor antagonist peptide, kinestatin, originally isolated by our group from the skin secretion of the giant fire-bellied toad, Bombina maxima, on the proliferation of the human prostate cancer cell lines, PC3, DU175 and LnCAP. The bradykinin receptor status of all cell lines investigated was established through PCR amplification of transcripts encoding both B1 and B2 receptor subtypes. Following this demonstration, all cell lines were grown in the presence or absence of kinestatin and several additional bradykinin receptor antagonists of amphibian skin origin and the effects on proliferation of the cell lines was investigated using the MTT assay and by counting of the cells in individual wells of 96-well plates. All of the amphibian skin secretion-derived bradykinin receptor antagonists inhibited proliferation of all of the prostate cancer lines investigated in a dose-dependent manner. In addition, following incubation of peptides with each cell line and analysis of catabolites by mass spectrometry, it was found that bradykinin was highly labile and each antagonist was highly stable under the conditions employed. Bradykinin signalling pathways are thus worthy of further investigation in human prostate cancer cell lines and the evidence presented here would suggest the testing of efficacy in animal models of prostate cancer as a positive outcome could lead to a drug development programme for the treatment of this disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Male infertility is a common cause of reproductive failure in humans. In mice, targeted deletions of the genes coding for FKBP6 or FKBP52, members of the FK506 binding protein family, can result in male infertility. In the case of FKBP52, this reflects an important role in potentiating Androgen Receptor (AR) signalling in the prostate and accessory glands, but not the testis. In infertile men, no mutations of FKBP52 or FKBP6 have been found so far, but the gene for FKBP-like (FKBPL) maps to chromosome 6p21.3, an area linked to azoospermia in a group of Japanese patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We know considerably more about what makes cells and tissues resistant or sensitive to radiation than we did 20 years ago. Novel techniques in molecular biology have made a major contribution to our understanding at the level of signalling pathways. Before the “New Biology” era, radioresponsiveness was defined in terms of physiological parameters designated as the five Rs. These are: repair, repopulation, reassortment, reoxygenation and radiosensitivity. Of these, only the role of hypoxia proved to be a robust predictive and prognostic marker, but radiotherapy regimens were nonetheless modified in terms of dose per fraction, fraction size and overall time, in ways that persist in clinical practice today. The first molecular techniques were applied to radiobiology about two decades ago and soon revealed the existence of genes/proteins that respond to and influence the cellular outcome of irradiation. The subsequent development of screening techniques using microarray technology has since revealed that a very large number of genes fall into this category. We can now obtain an adequately robust molecular signature, predicting for a radioresponsive phenotype using gene expression and proteomic approaches. In parallel with these developments, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) can now detect specific biological molecules such as haemoglobin and glucose, so revealing a 3D map of tumour blood flow and metabolism. The key to personalised radiotherapy will be to extend this capability to the proteins of the molecular signature that determine radiosensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CCK receptors represent potential targets in a number of diseases. Knowledge of CCK receptor binding sites is a prerequisite for the understanding of the molecular basis for their ligand recognition, partial agonism, ligand-induced trafficking of signalling. In the current paper, we report studies from our laboratory and others which have provided new data on the molecularbasis of the pharmacology and functioning of CCK1 and CCK2 receptors. It has been shown that: 1) homologous regions of the two receptors are involved in the binding site of CCK, however, positioning of CCK slightly differs in agreement with distinct phannacophores of CCK toward the two receptors and receptor sequence variations; 2) Binding sites of most of non-peptide agonists/ antagonist are buried in the pocket formed by transmembrane helices and overlap that of CCK; Aromatic amino acids within and near the binding site, especially in helix VI, are involved in receptor activation; 4) Like for other members of family A of G-protein coupled receptors, residues of the binding sites as well as of conserved motifs such as E/DRY, NPXXY are crucial for receptor activation. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Glycogen synthase kinase-3 (GSK-8) is a serine/threonine protein kinase, the activity of which is inhibited by a variety of extracellular stimuli including insulin, growth factors, cell specification factors and cell adhesion. Consequently, inhibition of GSK-3 activity has been proposed to play a role in the regulation of numerous signalling pathways that elicit pleiotropic cellular responses. This report describes the identification and characterisation of potent and selective small molecule inhibitors of GSK-3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: This review summarizes the currently available literature on the localization and proposed functions of a novel group of cells in the urinary bladder known as interstitial cells or interstitial cells of Cajal (ICC).

Methods: On-line searches of "Pubmed" for bladder, c-Kit, ICC, interstitial cell and myofibroblast were performed to identify relevant studies for the review.

Results: The literature contains substantial data that several sub-populations of ICC are present in the wall of the mammalian urinary bladder. These are located in the lamina propria and within the detrusor with distinctive cell shapes and morphological arrangements. Bladder ICC are identified with transmission electron microscopy or by immunohistochemical labeling using antibodies to the Kit receptor which is an established ICC marker. Lamina propria-ICC form a loose network connected via Cx43 gap junctions and are associated with mucosal nerves. Detrusor ICC track the smooth muscle bundles and make frequent contacts with intramural nerves. Both groups of ICC exhibit spontaneous electrical and Ca2+-signalling and also respond to application of neurotransmitter substances including ATP and carbachol. There is emerging evidence that the expression of ICC is upregulated in pathophysiological conditions including the overactive bladder.

Conclusions: There is now a convincing body of evidence that specialized ICC are present in the urinary bladder making important associations with other cells that make up the bladder wall and possessing physiological properties consistent with a role of bladder activity modulation. Neurourol. Urodynam. 29: 82–87, 2010. © 2009 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following resistance exercise in the fasted state, both protein synthesis and degradation in skeletal muscle are increased. The addition of essential amino acids potentiates the synthetic response suggesting that an amino acid sensor, which is involved in both synthesis and degradation, may be activated by resistance exercise. One such candidate protein is the class 3 phosphatidylinositol 3OH-kinase (PI3K) Vps34. To determine whether mammalian Vps34 (mVps34) is modulated by high-resistance contractions, mVps34 and S6K1 (an index of mTORC1) activity were measured in the distal hindlimb muscles of rats 0.5, 3, 6 and 18 h after acute unilateral high-resistance contractions with the contralateral muscles serving as a control. In the lengthening tibialis anterior (TA) muscle, S6K1 (0.5 h = 366.3 +/- 112.08%, 3 h = 124.7 +/- 15.96% and 6 h = 129.2 +/- 0%) and mVps34 (3 h = 68.8 +/- 15.1% and 6 h = 36.0 +/- 8.79%) activity both increased, whereas in the shortening soleus and plantaris (PLN) muscles the increase was significantly lower (PLN S6K1 0.5 h = 33.1 +/- 2.29% and 3 h = 47.0 +/- 6.65%; mVps34 3 h = 24.5 +/- 7.92%). HPLC analysis of the TA demonstrated a 25% increase in intramuscular leucine concentration in rats 1.5 h after exercise. A similar level of leucine added to C2C12 cells in vitro increased mVps34 activity 3.2-fold. These data suggest that, following high-resistance contractions, mVps34 activity is stimulated by an influx of essential amino acids such as leucine and this may prolong mTORC1 signalling and contribute to muscle hypertrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enteroinsular axis (EIA) constitutes a physiological signalling system whereby intestinal endocrine cells secrete incretin hormones following feeding that potentiate insulin secretion and contribute to the regulation of blood glucose homeostasis. The two key hormones responsible are named glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Recent years have witnessed sustained development of antidiabetic therapies that exploit the EIA. Current clinical compounds divide neatly into two classes. One concerns analogues or mimetics of GLP-1, such as exenatide (Byetta) or liraglutide (NN2211). The other group comprises the gliptins (e. g. sitagliptin and vildagliptin) which boost endogenous incretin activity by inhibiting the enzyme dipeptidyl peptidase 4 (DPP 4) that degrades both GLP-1 and GIP. Ongoing research indicates that further incretin and gliptin compounds will become available for clinical use in the near future, offering comparable or improved efficacy. For incretin analogues there is the prospect of prolonged duration of action and alternative routes of administration. This review focuses on recent advances in pre-clinical research and their translation into clinical studies to provide future therapies for type 2 diabetes targeting the EIA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis: Up-regulation of the receptor for AGEs (RAGE) and its ligands in diabetes has been observed in various tissues. Here, we sought to determine levels of RAGE and one of its most important ligands, S100B, in diabetic retina, and to investigate the regulatory role of S100B and RAGE in Müller glia.

Methods: Streptozotocin-diabetes was induced in Sprague-Dawley rats. RAGE, S100B and glial fibrillary acidic protein (GFAP) were detected in retinal cryosections. In parallel, the human retinal Müller cell line, MIO-M1, was maintained in normal glucose (5.5 mmol/l) or high glucose (25 mmol/l). RAGE knockdown was achieved using small interfering RNA (siRNA), while soluble RAGE was used as a competitive inhibitor of RAGE ligand binding. RAGE, S100B and cytokines were detected using quantitative RT-PCR, western blotting, cytokine protein arrays or ELISA. Activation of mitogen-activated protein kinase (MAPK) by RAGE was determined by western blotting.

Results: Compared with non-diabetic controls, RAGE and S100B were significantly elevated in the diabetic retina with apparent localisation in the Müller glia, occurring concomitantly with upregulation of GFAP. Exposure of MIO-M1 cells to high glucose induced increased production of RAGE and S100B. RAGE signalling via MAPK pathway was linked to cytokine production. Blockade of RAGE prevented cytokine responses induced by high glucose and S100B in Müller glia.

Conclusions/interpretation: Hyperglycaemia in vivo and in vitro exposure to high glucose induce upregulation of RAGE and its ligands, leading to RAGE signalling, which links to pro-inflammatory responses by retinal Müller glia. These data shed light on the potential clinical application of RAGE blockade to inhibit the progression of diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carboxyl-terminal modulator protein (CTMP) is a tumor suppressor-like binding partner of Protein kinase B (PKB/Akt) that negative regulates this kinase. In the course of our recent work, we identified that CTMP is consistently associated with leucine zipper/EF-hand-containing transmembrane-1 (LETM1). Here, we report that adenovirus-LETM1 increased the sensitivity of HeLa cells to apoptosis, induced by either staurosporine or actinomycin D. As shown previously, LETM1 localized to the inner mitochondrial membrane. Electron-microscopy analysis of adenovirus-LETM1 transduced cells revealed that mitochondrial cristae were swollen in these cells, a phenotype similar to that observed in optic atrophy type-1 (OPA1)-ablated cells. OPA1 cleavage was increased in LETM1-overexpressing cells, and this phenotype was reversed by overexpression of OPA1 variant-7, a cleavage resistant form of OPA1. Taken together, these data suggest that LETM1 is a novel binding partner for CTMP that may play an important role in mitochondrial fragmentation via OPA1-cleavage. (C) 2009 Elsevier Inc. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphoinositide 3-kinases produce 3'-phosphorylated phosphoinositides that act as second messengers to recruit other signalling proteins to the membrane(1). Pi3ks are activated by many extracellular stimuli and have been implicated in a variety of cellular responses(1). The Pi3k gene family is complex and the physiological roles of different classes and isoforms are not clear. The gene Pik3r1 encodes three proteins (p85 alpha, p55 alpha and p50 alpha) that serve as regulatory subunits of class I-A Pi3ks (ref. 2). Mice lacking only the p85a isoform are viable but display hypoglycaemia and increased insulin sensitivity correlating with upregulation of the p55 alpha and p50 alpha variants(3). Here we report that loss of all protein products of Pik3r1 results in perinatal lethality. We observed, among other abnormalities, extensive hepatocyte necrosis and chylous ascites, We also noted enlarged skeletal muscle fibres, brown fat necrosis and calcification of cardiac tissue. In liver and muscle, loss of the major regulatory isoform caused a great decrease in expression and activity of class I-A Pi3k catalytic subunits: nevertheless, homozygous mice still displayed hypoglycaemia, lower insulin levels and increased glucose tolerance. Our findings reveal that p55 alpha and/or p50 alpha are required for survival, but not for development of hypoglycaemia, in mice lacking p85 alpha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of immune modifiers of inherited cancer syndromes may provide a rationale for preventive therapy. Cowden disease (CD) is a genetically heterogeneous inherited cancer syndrome that arises predominantly from germline phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mutation and increased phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) signalling. However, many patients with classic CD diagnostic features are mutation-negative for PTEN (PTEN M-Neg). Interferon (IFN)-gamma can modulate the PI3K/mTOR pathway, but its association with PTEN M-Neg CD remains unclear. This study assessed IFN-gamma secretion by multi-colour flow cytometry in a CD kindred that was mutation-negative for PTEN and other known susceptibility genes. Because IFN-gamma responses may be regulated by killer cell immunoglobulin-like receptors (KIR) and respective human leucocyte antigen (HLA) ligands, KIR/HLA genotypes were also assessed. Activating treatments induced greater IFN-gamma secretion in PTEN M-Neg CD peripheral blood lymphocytes versus healthy controls. Increased frequency of activating KIR genes, potentially activating KIR/HLA compound genotypes and reduced frequency of inhibitory genotypes, were found in the PTEN M-Neg CD kindred. Differences of IFN-gamma secretion were observed among PTEN M-Neg CD patients with distinct KIR/HLA compound genotypes. Taken together, these findings show enhanced lymphocyte secretion of IFN-gamma that may influence the PI3K/mTOR CD causal molecular pathway in a PTEN mutation-negative CD kindred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CCN3, a founding member of the CCN family of growth regulators, was linked with hematology in 2003(1) when it was detected in human serum. CCN3 is expressed and secreted by hematopoietic progenitor cells in normal bone marrow. CCN3 acts through the core stem cell signalling pathways including Notch and Bone Morphogenic Protein, connecting CCN3 with the modulation of self-renewal and maturation of a number of cell lineages including hematopoietic, osteogenic and chondrogenic. CCN3 expression is disrupted in Chronic Myeloid Leukemia as a consequence of the BCR-ABL oncogene and allows the leukemic clone to evade growth regulation. In contrast, naive cord blood progenitors undergo enhanced clonal expansion in response to CCN3. Altered CCN3 expression is associated with numerous solid tumors including glioblastoma, melanoma. adrenocortical tumours, prostate cancer and bone malignancies including osteosarcoma. Mature CCN3 protein has five distinct modules and truncated protein variants with altered function are found in many cancers. Regulation by CCN3 is therefore cell type and isoform specific. CCN3 has emerged as a key player in stem cell regulation, hematopoiesis and a crucial component within the bone marrow microenvironment. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TRIP-Br proteins area novel family of transcriptional coregulators involved in E2F-mediated cell cycle progression. Three of the four mammalian members of TRIP-Br family, including TRIP-Br1, are known oncogenes. We now report the identification of the Bot regulatory subunit of serine/threonine protein phosphatase 2A (MA) as a novel TRIP-Br1 interactor, based on an affinity binding assay coupled with mass spectrometry. A GST-TRIP-Br1 fusion protein associates with catalytically active PP2A-AB alpha C holoenzyme in vitro. Coimmunoprecipitation confirms this association in vivo. Immunofluorescence staining with a monoclonal antibody against TRIP-Br1 reveals that endogenous TRIP-Br1 and PP2A-B alpha colocalize mainly in the cytoplasm. Consistently, immunoprecipitation followed by immunodetection with anti-phosphoserine antibody suggest that TRIP-Br1 exists in a serine-phosphorylated form. Inhibition of PP2A activity by okadaic acid or transcriptional silencing of the PP2A catalytic subunit by small interfering RNA results in downregulation of total TRIP-Br1 protein levels but upregulation of serine-phosphorylated TRIP-Br1. Overexpression of PP2A catalytic subunit increases TRIP-Br1 protein levels and TRIP-Br1 co-activated E2F1/DP1 transcription. Our data support a model in which association between PP2A-AB alpha C holoenzyme and TRIP-Br1 in vivo in mammalian cells represents a novel mechanism for regulating the level of TRIP-Br1 protooncoprotein. (C) 2008 Elsevier Inc. All rights reserved.