170 resultados para parasite-exported proteins
Resumo:
In the development and progression of hepatocellular carcinoma, tumor hypoxia plays an important role, as does activation of the Wnt pathway. The aim of this study was to characterize the expression and interrelationship between hypoxia and Wnt-pathway-associated proteins as prognostic factors for hepatocellular carcinoma. Expression of HIF-1α, CA-IX, E-cadherin, β-catenin, and Ki-67 was assessed by immunohistochemistry in 179 primary hepatocellular carcinoma cases. Univariate and multivariate analyses were performed to assess the relationship between the clinicopathological factors, protein expression, overall survival (OS), and recurrence-free survival (RFS). By univariate analysis, tumor stage, size, satellitosis, and vascular invasion were confirmed as prognostic factors for worse OS and RFS. High expression of HIF-1α, CA-IX, β-catenin, Ki-67, and E-cadherin was observed in 60, 15, 64, 8, and 64 % of tumors, respectively, and this was significantly associated with poor OS. CA-IX, HIF-1α, and E-cadherin were independent predictors of poor prognosis. We stratified 169 patients into four groups according to the expression level of hypoxia and Wnt pathway markers. The group with high expression of both hypoxia and Wnt-pathway-associated proteins showed worst OS. The poor survival of this group was also significant in patients with early stage disease and tumor size of less than 5 cm (p < 0.05). We identified a subgroup of hepatocellular carcinoma patients with high expression of both hypoxia and Wnt pathway proteins and found this predictive of poor survival. The therapeutic options for this group might need to be revisited.
Resumo:
β-Site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of Aβ peptides, proposed to drive the pathological changes found in Alzheimer’s disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (β-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulated BACE1 gene expression in a cell-based assay. This study aimed to analyze RTN3 and PPIL2 mRNA levels in four brain regions from individuals with AD and controls. BACE1 mRNA had been previously quantified in the samples, as had glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE), to track changing cell populations in the tissue. mRNA levels in the human post mortem brain tissue were assayed using quantitative real-time polymerase chain reaction (qPCR) and qbasePLUS, employing validated stably expressed reference genes. No differences in RTN3 or PPIL2 mRNA levels were found in individuals with AD, compared to controls. Both RTN3 and PPIL2 mRNA levels correlated significantly with BACE1 mRNA and all three showed similar disease stage-dependent changes with respect to NSE and GFAP. These findings indicated that the in vitro data demonstrating an effect of PPIL2 on BACE1 expression have functional relevance in vivo. Further research into BACE1-interacting proteins could provide a fruitful approach to the modulation of this protease and consequently Aβ production.