304 resultados para memory aid
Resumo:
Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age.
Resumo:
We examined the role of physiological regulation (heart rate, vagal tone, and salivary cortisol) in short-term memory in preterm and full-term 6-month-old infants. Using a deferred imitation task to evaluate social learning and memory recall, an experimenter modeled three novel behaviors (removing, shaking, and replacing a glove) on a puppet. Infants were tested immediately after being shown the behaviors as well as following a 10-min delay. We found that greater suppression of vagal tone was related to better memory recall in full-term infants tested immediately after the demonstration as well as in preterm infants tested later after a 10-min delay. We also found that preterm infants showed greater coordination of physiology (i.e., tighter coupling of vagal tone, heart rate, and cortisol) at rest and during retrieval than full-term infants. These findings provide new evidence of the important links between changes in autonomic activity and memory recall in infancy. They also raise the intriguing possibility that social learning, imitation behavior, and the formation of new memories are modulated by autonomic activity that is coordinated differently in preterm and full-term infants.
Resumo:
Local alpha-band synchronization has been associated with both cortical idling and active inhibition. Recent evidence, however, suggests that long-range alpha synchronization increases functional coupling between cortical regions. We demonstrate increased long-range alpha and beta band phase synchronization during short-term memory retention in children 6-10 years of age. Furthermore, whereas alpha-band synchronization between posterior cortex and other regions is increased during retention, local alpha-band synchronization over posterior cortex is reduced. This constitutes a functional dissociation for alpha synchronization across local and long-range cortical scales. We interpret long-range synchronization as reflecting functional integration within a network of frontal and visual cortical regions. Local desynchronization of alpha rhythms over posterior cortex, conversely, likely arises because of increased engagement of visual cortex during retention.
Resumo:
Cortisol plays an important role in learning and memory. An inverted-U shaped function has been proposed to account for the positive and negative effects of cortisol on cognitive performance and memory in adults, such that too little or too much impair but moderate amounts facilitate performance. Whether such relationships between cortisol and mental function apply to early infancy, when cortisol secretion, learning, and memory undergo rapid developmental changes, is unknown. We compared relationships between learning/memory and cortisol in preterm and full-term infants and examined whether a greater risk for adrenal insufficiency associated with prematurity produces differential cortisol-memory relationships. Learning in three-month old (corrected for gestational age) preterm and full-term infants was evaluated using a conjugate reinforcement mobile task. Memory was tested by repeating the same task 24h later. Salivary cortisol samples were collected before and 20 min after the presentation of the mobile. We found that preterm infants had lower cortisol levels and smaller cortisol responses than full-term infants. This is consistent with relative adrenal insufficiency reported in the neonatal period. Infants who showed increased cortisol levels from 0 to 20 min on Day 1 had significantly better memory, regardless of prematurity, than infants who showed decreased cortisol levels.
Resumo:
We propose a novel admission control policy for database queries. Our methodology uses system measurements of CPU utilization and query backlogs to determine interference between queries in execution on the same database server. Query interference may arise due to the concurrent access of hardware and software resources and can affect performance in positive and negative ways. Specifically our admission control considers the mix of jobs in service and prioritizes the query classes consuming CPU resources more efficiently. The policy ignores I/O subsystems and is therefore highly appropriate for in-memory databases. We validate our approach in trace-driven simulation and show performance increases of query slowdowns and throughputs compared to first-come first-served and shortest expected processing time first scheduling. Simulation experiments are parameterized from system traces of a SAP HANA in-memory database installation with TPC-H type workloads. © 2012 IEEE.
Resumo:
Objectives. In a bipolar disorder (BD) sample, the present study investigated: (i) the prevalence of trauma; (ii) the specificity of autobiographical memory (AM); (iii) the influence of childhood trauma on AM specificity, current inter-episode depressive mood, and BD severity; (iv) if AM specificity moderates the influence of childhood trauma on current inter-episode depressive mood and BD severity.
Methods. Fifty-two participants were recruited from a geographically well-defined mental health service in Northern Ireland. The AM test, self-report measures of lifetime experience of trauma, childhood trauma, and depression were administered. Severity of BD was estimated utilizing a systematic tool for reviewing all available clinical data of participants.
Results. A high prevalence of trauma was found. A total of 94.2% (49/52) of participants reported experiencing a traumatic event in either childhood or adulthood. AM specificity was significantly lower than previous reports of such in major depression. However, whilst childhood trauma predicted current inter-episode depressive mood, childhood trauma was not predictive of BD severity or AM specificity. Moreover, the association between childhood trauma and depressed mood was not moderated by AM specificity.
Conclusions. The findings of this study suggest a relationship between early psychosocial adversity and current inter-episode depressive mood in BD. In addition, levels of overgeneral AM are similar to that reported for depression, but are unrelated to childhood trauma, current inter-episode depressive mood, or BD severity. Clinical implications include the importance of routine assessment of trauma in BD and the need for adjunctive evidenced-based psychological therapies.
Resumo:
On multiprocessors with explicitly managed memory hierarchies (EMM), software has the responsibility of moving data in and out of fast local memories. This task can be complex and error-prone even for expert programmers. Before we can allow compilers to handle the complexity for us, we must identify the abstractions that are general enough to allow us to write applications with reasonable effort, yet speci?c enough to exploit the vast on-chip memory bandwidth of EMM multi-processors. To this end, we compare two programming models against hand-tuned codes on the STI Cell, paying attention to programmability and performance. The ?rst programming model, Sequoia, abstracts the memory hierarchy as private address spaces, each corresponding to a parallel task. The second, Cellgen, is a new framework which provides OpenMP-like semantics and the abstraction of a shared address spaces divided into private and shared data. We compare three applications programmed using these models against their hand-optimized counterparts in terms of abstractions, programming complexity, and performance.