211 resultados para laser-plasma acceleration, Gaussian pulse, motion of charged particle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton bursts with a narrow spectrum at an energy of (2.8 +/- 0.3 MeV) are accelerated from sub-micron water spray droplets irradiated by high-intensity (similar to 5 x 10(19)W/cm(2)), high-contrast (similar to 10(10)), ultra-short (40 fs) laser pulses. The acceleration is preferentially in the laser propagation direction. The explosion dynamics is governed by a residual ps-scale laser pulse pedestal which "mildly" preheats the droplet and changes its density profile before the arrival of the high intensity laser pulse peak. As a result, the energetic electrons extracted from the modified target by the high-intensity part of the laser pulse establish an anisotropic electrostatic field which results in anisotropic Coulomb explosion and proton acceleration predominantly in the forward direction. Hydrodynamic simulations of the target pre-expansion and 3D particle-in-cell simulations of the measured energy and anisotropy of the proton emission have confirmed the proposed acceleration scenario. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731712]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two- and three-dimensional particle-in-cell simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report experimental evidence for a Rayleigh-Taylor-like instability driven by radiation pressure of an ultraintense (1021W/cm2) laser pulse. The instability is witnessed by the highly modulated profile of the accelerated proton beam produced when the laser irradiates a 5 nm diamondlike carbon (90% C, 10% H) target. Clear anticorrelation between bubblelike modulations of the proton beam and transmitted laser profile further demonstrate the role of the radiation pressure in modulating the foil. Measurements of the modulation wavelength, and of the acceleration from Doppler-broadening of back-reflected light, agree quantitatively with particle-in-cell simulations performed for our experimental parameters and which confirm the existence of this instability. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion acceleration driven by high intensity laser pulses is attracting an impressive and steadily increasing research effort. Experiments over the past 10-15 years have demonstrated, over a wide range of laser and target parameters, the generation of multi-MeV proton and ion beams with unique properties, which have stimulated interest in a number of innovative applications. While most of this work has been based on sheath acceleration processes, where space-charge fields are established by relativistic electrons at surfaces of the irradiated target, a number of novel mechanisms has been the focus of recent theoretical and experimental activities. This paper will provide a brief review of the state of the art in the field of laser-driven ion acceleration, with particular attention to recent developments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-dimensional laser-plasma-interaction hydrodynamic code POLLUX has been used to simulate the ablation of a magnesium target by a 30-ns, 248-nm KrF excimer laser at low laser fluences of ≤10 J cm2. This code, originally written for much higher laser intensities, has been recently extended to include a detailed description of the equation of state in order to treat changes of phase within the target material, and also includes a Thomas Fermi description of the electrons. The simulated temporal and spatial evolution of the plasma plume in the early phase of the expansion (≤100 ns) is compared with experimental interferometric measurements of electron density. The expansion dynamics are in good agreement, although the simulated electron number density is about 2.5 times higher than the experimental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a similar to 3 ns duration neutron pulse with 10(4) n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher–catcher scenario, anisotropy in neutron emission was studied for the deuterium–deuterium fusion reaction. Simulation results are consistent with the narrow-divergence ( ∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-plasma based accelerators of protons and heavier ions are a source of potential interest for several applications, including in the biomedical area. While the potential future use in cancer hadrontherapy acts as a strong aspirational motivation for this research field, radiobiology employing laser-driven ion bursts is alreadyan active field of research. Here we give a summary of the state of the art in laser driven ion acceleration, of the main challenges currently faced by the research inthis field and of some of the current and future strategies for overcoming them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the K-alpha radiation emitted from Ti foils irradiated with intense, similar to0.2 J, 67 fs, 800 nm laser pulses, scanning a range of intensities (similar to10(15)-10(18) W cm(-2)), is reported. The brightness of single-shot K-alpha line emission from the front of the targets is recorded. The yield from bare titanium (Ti) is compared to that from plastic (parylene-E) coated Ti. It is demonstrated that, for a defocused beam, a thin layer of plastic increases the yield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of collisional de-excitation (quenching) coefficients required for the interpretation of emission and fluorescence spectroscopic measurements are reported. Particular attention is turned on argon transitions which are of interest for actinometric determinations of atomic ground state populations and on fluorescence lines originating from excited atoms and noble gases in connection with two-photon excitation (TALIF) of atomic radicals. A novel method is described which allows to infer quenching coefficients for collisions with molecular hydrogen of noble gas states in the energy range up to 24 eV. The excitation is performed in these experiments by collisions of energetic electrons in the sheath of an RF excited hydrogen plasma during the field reversal phase which lasts about 10 ns. We describe in addition a calibration method - including quenching effects - for the determination by TALIF of absolute atomic radical densities of hydrogen, nitrogen and oxygen using two-photon resonances in noble gases close by the resonances of the species mentioned. The paper closes with first ideas on a novel technique to bypass quenching effects in TALIF by introducing an additional, controllable loss by photoionization that will allow quenching-free determination of absolute atomic densities with prevalent nanosecond laser systems in situations where collisional de-excitation dominates over spontaneous emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-Mev proton beams generated by target normal sheath acceleration (TNSA) during the interaction of an ultra intense laser beam (Ia parts per thousand yen10(19) W/cm(2)) with a thin metallic foil (thickness of the order of a few tens of microns) are particularly suited as a particle probe for laser plasma experiments. The proton imaging technique employs a laser-driven proton beam in a point-projection imaging scheme as a diagnostic tool for the detection of electric fields in such experiments. The proton probing technique has been applied in experiments of relevance to inertial confinement fusion (ICF) such as laser heated gasbags and laser-hohlraum experiments. The data provides direct information on the onset of laser beam filamentation and on the plasma expansion in the hohlraum's interior, and confirms the suitability and usefulness of this technique as an ICF diagnostic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compression of a finite extent Gaussian laser pulse in collisional plasma is investigated. An analytical model is employed to describe the spatiotemporal evolution of a laser pulse propagating through the plasma medium. The pulse geometry is modeled via an appropriate ansatz which takes into account both beam radius (in space) and pulse width (in time). Compression and self-focusing are taken into account via appropriated group velocity dispersion and nonlinearity terms. The competition among the collisional nonlinearity in the plasma and the effect of divergence due to diffraction is pointed out and investigated numerically. Our results suggest that laser pulse compression and intensity localization is enhanced by plasma collisionality. In specific, a pulse width compression by an order of magnitude approximately is observed, for typical collisional laser plasma parameters, along with a significant increase in the intensity.