248 resultados para laser ion source


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large magnetic fields generated during laser-matter interaction at irradiances of ~ 5×1014 W?cm-2 have been measured using a deflectometry technique employing MeV laser-accelerated protons. Azimuthal magnetic fields were identified unambiguously via a characteristic proton deflection pattern and found to have an amplitude of ~ 45 T in the outer coronal region. Comparison with magnetohydrodynamic simulations confirms that in this regime the mathTe×mathne source is the main field generation mechanism, while additional terms are negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Thomson scattering system has been installed at the Tokyo electron beam ion trap for probing characteristics of the electron beam. A YVO4 green laser beam was injected antiparallel to the electron beam. The image of the Thomson scattering light from the electron beam has been observed using a charged-coupled device camera. By using a combination of interference filters, the spectral distribution of the Thomson scattering light has been measured. The Doppler shift observed for the scattered light is consistent with the beam energy. The beam radius dependence was investigated as a function of the beam energy, the beam current, and the magnetic field at the trap region. The variation of the measured beam radius against the beam current and the magnetic field were similar to those in Herrmann's prediction. The beam radius as a function of the beam energy was also similar to Herrmann's prediction but seemed to become larger at low energy. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability of intense ultrashort laser pulses to initiate, control and image vibrational wavepacket dynamics in the deuterium molecular ion has been simulated with a view to inform and direct future femtosecond pump-control-probe experiments. The intense-field coherent control of the vibrational superposition has been studied as a function of pulse intensity and delay time, to provide an indication of key constraints for experimental studies. For selected cases of the control mechanism, probing of the subsequent vibrational wavepacket dynamics has been simulated via the photodissociation (PD) channel. Such PD probing is shown to elucidate the modified wavepacket dynamics where the position of the quantum revival is sensitive to the control process. Through Fourier transform analysis the PD yield is also shown to provide a characterisation of the vibrational distribution. It has been shown that a simple 'critical R cut-off' approximation can be used to reproduce the effect of a probe pulse interaction, providing a convenient and efficient alternative to intensive computer simulations of the PD mechanism in the deuterium molecular ion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

H-3(+) is the simplest triatomic molecule and plays an important role in laboratory and astrophysical plasmas. It is very stable both in terms of its electronic and nuclear degrees of freedom but is difficult to study in depth in the laboratory due to its ionic nature. In this communication, experimental results are presented for the strong field dissociation of the isotopic analogue D-3(+), using 30 fs, 800 nm laser pulses with intensities up to 10(16) W cm(-2). By employing a novel experimental set-up, ions were confined in an electrostatic ion trap so that dissociation of the molecule could be studied as it radiatively cools. It was determined that dissociation could only be observed for molecules in ro-vibrational states relatively close to the dissociation limit, while more tightly bound states demonstrated remarkable stability in even the strongest fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proton radiography technique has been used to investigate the incidence of a 3 x10(19) W/cm(2) infrared pulse with a 125 mu m-diameter gold wire. The laser interaction is observed to drive the growth of a radial electric field similar to 10(10) V/m on the surface of the wire which rises and decays over a temporal window of 20 ps. Such studies of the ultrafast charging of a solid irradiated at high-intensity may be of relevance to schemes for laser-driven ion acceleration and the fast-ignitor concept for inertial confinement fusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous optical absorption and laser-induced fluorescence measurements have been used to map the three-dimensional number densities of ground-state ions and neutrals within a low-temperature KrF laser-produced magnesium plasma expanding into vacuum. Data is reported for the symmetry plane of the plasma, which includes the laser interaction point at a delay of 1 μs after the ∼30 ns KrF laser ablation pulse and for a laser fluence of 2 J cm−2 on target. The number density distributions of ion and neutral species within this plane indicate that two distinct regions exist within the plume; one is a fast component containing ions and neutrals at maximum densities of ∼3×1013 cm−3 and ∼4×1012 cm−3, respectively and the second is a high-density region containing slow neutral species, at densities up to ∼1×1015 cm−3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10(19) W/cm(2). 100 MeV proton beams are obtained by increasing the intensities to 2 x 10(20) W/cm(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A narrow band proton bursts at energies of 1.6 +/- 0.08 MeV were observed when a water spray consisting of empty set(150 nm)-diameter droplets was irradiated by an ultrashort laser pulse of about 45 fs duration and at an intensity of 5 X 10(19) W/cm(2). The results are explained by a Coulomb explosion of sub-laser-wavelength droplets composed of two ion species. The laser prepulse plays an important role. By pre-evaporation of the droplets, its diameter is reduced so that the main pulse can interact with a smaller droplet, and this remaining bulk can be ionized to high states. In the case of water, the mixture of quite differently charged ions establishes an

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed the coupling of ultraintense lasers (at similar to 2 X 1019 W/cm(2)) with solid foils of limited transverse extent (similar to 10 s of mu m) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new regime is described for radiation pressure acceleration of a thin foil by an intense laser beam of above 10(20) W cm(-2). Highly monoenergetic proton beams extending to giga-electron-volt energies can be produced with very high efficiency using circularly polarized light. The proton beams have a very small divergence angle (< 4 degrees). This new method allows the construction of ultra-compact proton and ion accelerators with ultra-short particle bursts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few years, the development of light sources of the 4(th) generation, namely XUV/X-ray Free Electron Lasers provides to the scientific community outstanding tools to investigate matter under extreme conditions never obtained in laboratories so far. As theory is at its infancy, the analysis of matter via the self-emission of the target is of central importance. The characterization of such dense matter is possible if photons can escape the medium. As the absorption of K-shell X-ray transitions is minimal, it plays a key role in this study. We report here the first successful observation of K-shell emission of Nitrogen at 430 eV using an XUV-Free Electron Laser to irradiate solid Boron Nitride targets under exceptional conditions: photon energy of 92 eV, pulse duration of similar to 20 fs, micro focusing leading to intensities larger than 10(16) W/cm(2). Using a Bragg crystal of THM coupled to a CCD, we resolved K-shell line emission from different charge states. We demonstrate that the spectroscopic data allow characterization of electron heating processes when X-ray radiation is interacting with solid matter. As energy transport is non-trivial because the light source is monochromatic, these results have an important impact on the theory. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural defects in ion crystals can be formed during a linear quench of the transverse trapping frequency across the mechanical instability from a linear chain to a zigzag structure. The density of defects after the sweep can be conveniently described by the Kibble-Zurek mechanism (KZM). In particular, the number of kinks in the zigzag ordering can be derived from a time-dependent Ginzburg-Landau equation for the order parameter, here the zigzag transverse size, under the assumption that the ions are continuously laser cooled. In a linear Paul trap, the transition becomes inhomogeneous, since the charge density is larger in the center and more rarefied at the edges. During the linear quench, the mechanical instability is first crossed in the center of the chain, and a front, at which the mechanical instability is crossed during the quench, is identified that propagates along the chain from the center to the edges. If the velocity of this front is smaller than the sound velocity, the dynamics become adiabatic even in the thermodynamic limit and no defect is produced. Otherwise, the nucleation of kinks is reduced with respect to the case in which the charges are homogeneously distributed, leading to a new scaling of the density of kinks with the quenching rate. The analytical predictions are verified numerically by integrating the Langevin equations of motion of the ions, in the presence of a time-dependent transverse confinement. We argue that the non-equilibrium dynamics of an ion chain in a Paul trap constitutes an ideal scenario to test the inhomogeneous extension of the KZM, which lacks experimental evidence to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonequilibrium dynamics of an ion chain in a highly anisotropic trap is studied when the transverse trap frequency is quenched across the value at which the chain undergoes a continuous phase transition from a linear to a zigzag structure. Within Landau theory, an equation for the order parameter, corresponding to the transverse size of the zigzag structure, is determined when the vibrational motion is damped via laser cooling. The number of structural defects produced during a linear quench of the transverse trapping frequency is predicted and verified numerically. It is shown to obey the scaling predicted by the Kibble-Zurek mechanism, when extended to take into account the spatial inhomogeneities of the ion chain in a linear Paul trap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss a simple architecture for a quantum TOFFOLI gate implemented using three trapped ions. The gate, which, in principle, can be implemented with a single laser-induced operation, is effective under rather general conditions and is strikingly robust (within any experimentally realistic range of values) against dephasing, heating, and random fluctuations of the Hamiltonian parameters. We provide a full characterization of the unitary and noise-affected gate using three-qubit quantum process tomography.