300 resultados para inflammatory peptides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ascaris suum contains a large number of FMRFamide-related peptides (FaRPs) of which KNEFIRFamide (AF1), KHEYLRFamide (AF2) and KSAYMRFamide (AF8, also called PF3) have been extensively studied and are known to exert actions on somatic muscle strips of the worm. In the present study, the effects of AF1, AF2 and AF8 on the activity of the vagina vera of female A. suum have been examined in vitro. The vagina vera is a muscular tube connecting the uterus and vagina uteri to the gonopore and is probably involved in regulating egg output. The tissue exhibited spontaneous, rhythmic contractions in vitro, which were modulated by each of the FaRPs tested. The effects of each of the peptides were qualitatively and quantitatively different, and in each case were reversible. AF1 (1 mu M) caused a biphasic response in the form of a transient lengthening of the preparation, followed by a shortening; contractions were initially inhibited but resumed 5 min post-addition of the peptide. Lower concentrations (less than or equal to 0.1 mu M) induced a less marked effect, with rhythmic contractions returning 5 min post-addition. AF2 and AF8 reduced contraction frequency at concentrations greater than or equal to 0.1 mu M. Both peptides also caused the tissue to shorten, although the effects of AF8 on baseline tension were inconsistent. The apparent potencies of AF1 and AF8 on contraction frequency of the vagina vera were 10-fold greater than AF2 and, unlike their actions on A. suum somatic body wall muscles, the actions of AF1 and AF2 were qualitatively different. Indeed, the effects of each of these FaRPs on the vagina vera were markedly different from those observed on the somatic muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the potent myoactivity of flatworm FMRFamide-related peptides (FaRPs) on isolated muscle fibers of the human blood fluke, Schistosoma mansoni. The turbellarian peptides YIRFamide (EC50 4 eta M), GYIRFamide (EC50 1 eta M). and RYIRFamide (EC50 7 eta M), all induced muscle contraction more potently than the cestode FaRP GNFFRFamide (EC50 500 eta M). Using a series of synthetic analogs of the flatworm peptides YIRFamide, GYIRFamide and RYIRFamide, the structure-activity relationships of the muscle FaRP receptor were examined. With a few exceptions, each residue in YIRFamide is important in the maintenance of its myoactivity. Alanine scans resulted in peptides that were inactive (Ala(1), Ala(2), Ala(3) and Ala(4) YIRFamide; Ala(4) and Ala(5) RYIRFamide) or had much reduced potencies (Ala(1), Ala(2) and Ala(3) RYIRFamide). Substitution of the N-terminal (Tyr(1)) residue of YIRFamide with the non-aromatic residues Thr or Arg produced analogs with greatly reduced potency. Replacement of the N-terminal Tyr with aromatic amino acids resulted in myoactive peptides (FIRFamide, EC50 100 eta M; WIRFamide, EC50 0.5 eta M). The activity of YIRFamide analogs which possessed a Leu(2), Phe(2) or Met(2) residue (EC50's 10, 1 and 3 eta M, respectively) instead of Ile(2) was not significantly altered, whereas, YVRFamide had a greatly reduced (EC50 200 eta M) activity. Replacement of the Phe(4) with a Tyr(4) (YIRYamide) also greatly lowered potency. Truncated analogs were either inactive (FRFamide, YRFamide, HRFamide, RFamide, Famide) or had very low potency (IRFamide and MRFamide), with the exception of nLRFamide (EC50 20 eta M). YIRF free acid was inactive. In summary, these data show the general structural requirements of this schistosome muscle FaRP receptor to be similar, but not identical, to those of previously characterized molluscan FaRP receptors. (C) 1997 Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The actions of known platyhelminth FaRPs on the contractility of whole-worm preparations of the monogenean, Diclidophora merlangi have been examined in vitro for the first time. All of the peptides tested had excitatory effects on the motor activity of the worm. The order of potency for the peptides tested was: YIRFamide > GYIRFamide = RYIRFamide > GNFFRFamide = FLRFamide. However, although YIRFamide was more potent than GYIRFamide, the latter was the most efficacious on each of the motility parameters (tension, contraction amplitude and contraction frequency) examined at concentrations greater than or equal to 0.1 mu M. Serotonin, which stimulates contractility in the worm was used as a positive control. The excitatory activity of turbellarian and cestode neuropeptides on a monogenean indicates at least some structural similarities in the neuropeptide receptors of these classes of flatworm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological effects of synthetic replicates of the nematode FaRPs, AF1 (KNEFIRFamide), AF2 (KHEYLRFamide), PF1 (SDPNFLRFamide), PF2 (SADPNFLRFamide), AF8/PF3 (KSAYMRFamide) and PF4 (KPNFIRFamide) were examined on muscle preparations of the liver fluke, Fasciola hepatica. Changes in contractility following the addition of the test compound were recorded using a photo-optic transducer system. Unlike the varied effects these peptides have on nematode somatic musculature, all were found to induce excitatory responses in the muscle activity of F. hepatica. While qualitative effects of the nematode peptides were similar in that they induced increases in both the amplitude and frequency of F. hepatica muscle contractions, they varied considerably in the potency of their excitatory effects. The threshold activity for each peptide was as follows: 10 mu M, PF1 and PF2; 3 mu M, AF1 and PF3; 1 mu M, AF2; and 30 nM, PF4. The results demonstrate, for the first time, the cross-phyla activity of nematode neuropeptides on the neuromuscular activity of a trematode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of classical neurotransmitter molecules and numerous peptidic messenger molecules in nematode nervous systems indicate that although structurally simple, nematode nervous systems are chemically complex. Thus far, studies on one nematode neuropeptide family, namely the FMRFamide-related peptides (FaRPs), have revealed an unexpected variety of neuropeptide structures in both free-living and parasitic species. To date 23 nematode FaRPs have been structurally characterized including 12 from Ascaris suum, 8 from Caenorhabditis elegans, 5 from Panagrellus redivivus and 1 from Haemonchus contortus. Ten FaRP-encoding genes have been identified in Caenorhabditis elegans. However, the full complement of nematode neuronal messengers has yet to be described and unidentified nematode FaRPs await detection. Preliminary characterization of the actions of nematode neuropeptides on the somatic musculature and neurones of A. suum has revealed that these peptidic messengers have potent and complex effects. Identified complexities include the biphasic effects of KNEFIRFamide/KHEYLRFamide (AF1/2; relaxation of tone followed by oscillatory contractile activity) and KPNFIRFamide (PF4; rapid relaxation of tone followed by an increase in tone), the diverse actions of KSAYMRFamide (AF8 or PF3; relaxes dorsal muscles and contracts ventral muscles) and the apparent coupling of the relaxatory effects of SDPNFLRFamide/SADPNFLRFamide (PF1/PF2) to nitric oxide release. Indeed, all of the nematode FaRPs which have been tested on somatic muscle strips of A. suum have actions which are clearly physiologically distinguishable. Although we are a very long way from understanding how the actions of these peptides are co-ordinated, not only with those of each other but also with those of the classical transmitter molecules, to control nematode behaviour, their abundance coupled with their diversity of structure and function indicates a hitherto unidentified sophistication to nematode neuromuscular intergration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of each of the known platyhelminth neuropeptides were determined on muscle-strip preparations from the liver fluke, Fasciola hepatica. The activity of synthetic replicates of the C-terminal nonapeptide of neuropeptide F (NPF9, Moniezia expansa), and the FMRFamide-related peptides (FaRPs), GNFFRFamide, RYIRFamide, GYIRFamide and YIRFamide, were examined. Muscle-strip activity was recorded from 1 mm segments of muscle prepared from 28 to 32-day-old worms, using a photo-optic transducer system. None of the peptides (less than or equal to 10 mu M) altered baseline tension significantly; however, each of the peptides increased the amplitude and frequency of muscle contraction. The threshold for activity of each of the peptides examined was, respectively, 1 nM (RYIRFamide), 0.3 mu M (GYIRFamide and YIRFamide), and 10 mu M (GNFFRFamide and NPF9). All of the effects were reversible and repeatable, following wash-out. Muscle-strip integrity was tested following experimentation, using arecoline (10 mu M) and high-K+ bathing medium (90 mM K+).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FMRFamide-related peptides (FaRPs) are the largest known family of invertebrate neuropeptides. Immunocytochemical screens of nematode tissues using antisera raised to these peptides have localized extensive FaRP-immunostaining to their nervous systems. Although 21 FaRPs have been isolated and sequenced from extracts of free-living and parasitic nematodes, available evidence indicates that other FaRPs await discovery. While our knowledge of the pharmacology of these native nematode neuropeptides is extremely limited, reports on their physiological activity in nematodes are ever increasing. All the nematode FaRPs examined so far have been found to have potent and varied actions on nematode neuromuscular activity. It is only through the extensive pharmacological and physiological assessment of the tissue, cell and receptor interactions of these peptidic messengers that an understanding of their activity on nematode neuromusculature will be possible. In this review, Aaron Maule and colleagues examine the current understanding of the pharmacology of nematode FaRPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platyhelminths are the most primitive metazoan phylum to possess a true central nervous system, comprising a brain and longitudinal nerve cords connected by commissures. Additional to the presence of classical neurotransmitters, the nervous systems of all major groups of flatworms examined have widespread and abundant peptidergic components, Decades of research on the major invertebrate phyla, Mollusca and Arthropoda, have revealed the primary structures and putative functions of several families of structurally related peptides, the best studied being the FMRFamide-related peptides (FaRPs). Recently, the first platyhelminth FaRP was isolated from the tapeworm, Moniezia expansa, and was found to be a hexapeptide amide, GNFFRFamide. Two additional PaRPs were isolated from species of turbellarians; these were pentapeptides, RYIRFamide (Artioposthia triangulata) and GYIRFamide (Dugesia tigrina). The primary structure of a monogenean or digenean FaRP has yet to be deduced. Preliminary physiological studies have shown that both of the turbellarian FaRPs elicit dose-dependent contractions of isolated digenean and turbellarian somatic muscle fibres. Unlike the high structural diversity of FaRPs found in molluscs, arthropods and nematodes, the complement of FaRPs in individual species of platyhelminths appears to be restricted to 1 or 2 related molecules. Much remains to be learnt about platyhelminth PaRPs, particularly from peptide isolation, molecular cloning of precursor proteins, receptor localization, and physiological studies. Copyright (C) 1996 Australian Society for Parasitology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decade it has become clear that the nervous systems of platyhelminths are both complex and highly developed, particularly in peptidergic elements. The central position of an ancestral flatworm in the evolution of the Bilateria has placed a greater importance on the study of modern flatworms. Using antisera generated to the C-terminal region of platyhelminth neuropeptide F and the molluscan neuropeptide, FMRFamide, in immunocytochemistry at both Light and ultrastructural levels, immunoreactivities have been localised within the nervous systems of three species of triclad turbellarians, Dugesia lugubris, Dendrocoelum lacteum, and Polycelis nigra, and one species of monogenean trematode, Diclidophora merlangi. Extensive immunostaining was obtained with both antisera throughout the central and peripheral nervous systems of all species studied, but intensity and abundance was significantly greater in the turbellarians. Indirect electron-immunogold labeling demonstrated that immunoreactivity to both neuropeptides was often colocalised in neurosecretory vesicles, although discrete populations of vesicles were also observed. Radioimmunoassay of extracts of all species confirmed that neuropeptide F immunoreactivity was consistently more abundant than FMRFamide immunoreactivity, and that the levels of both in the three turbellarians were several orders of magnitude greater than those found in the monogenean. Chromatographic analyses of turbellarian extracts revealed that neuropeptide F and FMRFamide immunoreactivities were attributable to different peptides. These data imply that the neuropeptidergic systems of turbellarians are considerably more extensive than those of monogeneans, and would suggest that a regression has occurred in the latter as a consequence of the adoption of a more sedentary parasitic lifestyle. (C) 1995 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molluscan FMRFamide and two recently discovered platyhelminth FMRFamide-related peptides (FaRPs), GNFFRFamide from the cestode Moniezia expansa and RYIRFamide from the terrestrial turbellarian Artioposthia triangulata, cause dose-dependent contractions of individual muscle fibres from Schistosoma mansoni in vitro. The most potent FaRP tested was the turbellarian peptide RYIRFamide, which produced a concentration-dependent effect between 10(-9) and 10(-7) M. FMRFamide and GNFFRFamide were less potent, inducing contractions between 10(-8)-10(-6) M and 10(-7)-10(-5) M respectively. The contractile effect of each of these peptides was blocked by the presence of 1 mu M FMR-D-Famide. FMRF free acid did not elicit contraction of the muscle fibres. The FaRP-induced contractions did not occur if the Ca2+ was omitted and 0.5 mu M EGTA. was added to the extracellular medium. The FaRP-induced contractions were not blocked by the Ca2+ channel blockers nicardipine, verapamil or diltiazem, although high Kf-induced contractions of these fibres were blocked by nicardipine. These data indicate the presence of FaRP receptors on schistosome muscle fibres and demonstrate their ability to mediate muscle contraction. The action of these endogenous flatworm peptides on schistosome muscle is the first demonstration of a direct excitatory effect of any putative neurotransmitter on the muscle of a flatworm, and establishes a role for FaRPs in neuromuscular transmission in trematodes. In addition, it provides the first evidence that the peptidergic nervous system is a rational target for chemotherapeutic attack in parasitic platyhelmiths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The allatostatins are a family of peptides isolated originally from the cockroach, Diploptera punctata. Related peptides have been identified in Periplaneta americana and the blowfly, Calliphora vomitoria. These peptides have been shown to be potent inhibitors of juvenile hormone synthesis in these species. A peptide inhibitor of juvenile hormone biosynthesis has also been isolated from the moth, Manduca sexta; however, this peptide has no structural homology with the D. punctata-type allatostatins. Investigations of the phylogeny of the D. punctata allatostatin peptide family have been started by examining a number of nonarthropod invertebrates for the presence of allatostatin-like molecules using immunocytochemistry with antisera directed against the conserved C-terminal region of this family. Allatostatin-like immunoreactivity (ALIR) was demonstrated in the nervous systems of Hydra oligactis (Hydrozoa), Moniezia expansa (Cestoda), Schistosoma mansoni (Trematoda), Artioposthia triangulata (Turbellaria), Ascaris suum (Nematoda), Lumbricus terrestris (Oligochaeta), Limax pseudoflavus (Gastropoda), and Eledone cirrhosa (Cephalopoda). ALIR could not be demonstrated in Ciona intestinalis (Ascidiacea). These results suggest that molecules related to the allatostatins may play an important role in nervous system function in many invertebrates as well as in insects and that they also have an ancient evolutionary lineage. (C) 1994 Wiley-Liss, Inc.