192 resultados para alkali-activated slag


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taguchi method was applied to investigate the optimal operating conditions in the preparation of activated carbon using palm kernel shell with quadruple control factors: irradiation time, microwave power, concentration of phosphoric acid as impregnation substance and impregnation ratio between acid and palm kernel shell. The best combination of the control factors as obtained by applying Taguchi method was microwave power of 800 W, irradiation time of 17 min, impregnation ratio of 2, and acid concentration of 85%. The noise factor (particle size of raw material) was considered in a separate outer array, which had no effect on the quality of the activated carbon as confirmed by t-test. Activated carbon prepared at optimum combination of control factors had high BET surface area of 1,473.55 m² g-1 and high porosity. The adsorption equilibrium and kinetic data can satisfactorily be described by the Langmuir isotherm and a pseudo-second-order kinetic model, respectively. The maximum adsorbing capacity suggested by the Langmuir model was 1000 mg g-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the utilization of deep eutectic solvents (DESs) based on the mixture of the N-methylacetamide (MAc) with a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF6; or nitrate, NO3) as electrolytes for carbon-based supercapacitors at 80 °C. The investigated DESs were formulated by mixing a LiX with the MAc (at xLi = 0.25). All DESs show the typical eutectic characteristic with eutectic points localized in the temperature range from −85 to −52 °C. Using thermal properties measured by differential scanning calorimetry (DSC), solid–liquid equilibrium phase diagrams of investigated LiX–MAc mixtures were then depicted and also compared with those predicted by using the COSMOThermX software. However, the transport properties of selected DESs (such as the conductivity (σ) and the fluidity (η–1)) are not very interesting at ambient temperature, while by increasing the temperature up to 80 °C, these properties become more favorable for electrochemical applications, as shown by the calculated Walden products: w = ση–1 (mS cm–1 Pa–1 s–1) (7 < w < 16 at 25 °C and 513 < w < 649 at 80 °C). This “superionicity” behavior of selected DESs used as electrolytes explains their good cycling ability, which was determined herein by cyclic voltammetry and galvanostic charge–discharge methods, with high capacities up to 380 F g–1 at elevated voltage and temperature, i.e., ΔE = 2.8 V and 80 °C for the LiTFSI–MAc mixture at xLi = 0.25, for example. The electrochemical resistances ESR (equivalent series resistance) and EDR (equivalent diffusion resistance) evaluated using electrochemical impedance spectroscopy (EIS) measurements clearly demonstrate that according to the nature of anion, the mechanism of ions adsorption can be described by pure double-layer adsorption at the specific surface or by the insertion of desolvated ions into the ultramicropores of the activated carbon material. The insertion of lithium ions is observed by the presence of two reversible peaks in the CVs when the operating voltage exceeds 2 V. Finally, the efficiency and capacitance of symmetric AC/AC systems were then evaluated to show the imbalance carbon electrodes caused by important lithium insertion at the negative and by the saturation of the positive by anions, both mechanisms prevent in fact the system to be operational. Considering the promising properties, especially their cost, hazard, and risks of these DESs series, their introduction as safer electrolytes could represent an important challenge for the realization of environmentally friendly EDLCs operating at high temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible-light-activated yellow amorphous TiO2 (yam- TiO 2) was synthesised by a simple and organic-free precipitation method. TiN, an alternative precursor for TiO2 preparation, was dissolved in hydrogen peroxide under acidic condition (pH∼1) adjusted by nitric acid. The yellow precipitate was obtained after adjusting pH of the resultant red brown solution to 2 with NH4OH. The BET surface area of this sample was 261 m2/g. The visible light photoactivity was evaluated on the basis of the photobleaching of methylene blue (MB) in an aqueous solution by using a 250 W metal halide bulb equipped with UV cutoff filter (λ>420 nm) under aerobic conditions. Yam- TiO2 exhibits an interesting property of being both surface adsorbent and photoactive under visible light. It was assigned to the η2-peroxide, an active intermediate form of the addition of H2O2 into crystallined TiO2 photocatalyst. It can be concluded that an active intermediate form of titanium peroxo species in photocatalytic process can be synthesised and used as a visible-light-driven photocatalyst

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geopolymer binders are generally formed by reacting powdered aluminosilicate precursors with alkali silicate activators. Most research to date has concentrated on using either pulverised fuel ash or high purity dehydroxylated kaolin (metakaolin) in association with ground granulated blast furnace slag as the main precursor material. However, recently, attention has turned to alternative calcined clays that are abundant throughout the globe and have lower kaolinite contents than commercially available metakaolins. Due to the lack of clear and simple screening protocols enabling assessment of such geological resources for use as precursors in geopolymer systems, the present paper presents results from experimental work that was carried out to develop a functional binder using materials containing kaolinite taken from the Interbasaltic Formation of Northern Ireland. The influence of mineralogy has been examined, and a screening process, using three Interbasaltic materials as examples, that will assist in the rapid selection of suitable geopolymeric precursors from such materials is outlined.