393 resultados para Winnicott, D. W. (Donald Woods), 1896-1971
Resumo:
We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion Hubble Space Telescope (HST) images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two weeks after explosion. We compare SN 2004A to the similar Type II-P SN 1999em and estimate an explosion epoch of 2004 January 6. We also calculate three new distances to NGC 6207 of 21.0 +/- 4.3, 21.4 +/- 3.5 and 25.1 +/- 1.7 Mpc. The former was calculated using the Standard Candle Method (SCM) for SNe II-P, and the latter two from the brightest supergiants method (BSM). We combine these three distances with existing kinematic distances, to derive a mean value of 20.3 +/- 3.4 Mpc. Using this distance, we estimate that the ejected nickel mass in the explosion is 0.046(-0.017)(+0.031) M-circle dot. The progenitor of SN 2004A is identified in pre-explosion WFPC2 F814W images with a magnitude of m(F814W) = 24.3 +/- 0.3, but is below the detection limit of the F606W images. We show that this was likely a red supergiant (RSG) with a mass of 9(-2)(+3) M-circle dot. The object is detected at 4.7 sigma above the background noise. Even if this detection is spurious, the 5 sigma upper limit would give a robust upper mass limit of 12M(circle dot) for a RSG progenitor. These initial masses are very similar to those of two previously identified RSG progenitors of the Type II-P SNe 2004gd (8(-2)(+4) M circle dot) and 2005cs (9(-2)(+3) M-circle dot).
Resumo:
Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.