217 resultados para Tela beta tóxica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkholderia cenocepacia infections in CF patients involve heightened inflammation, fatal sepsis, and high antibiotic resistance. Proinflammatory IL-1 beta secretion is important in airway inflammation and tissue damage. However, little is known about this pathway in macrophages upon B. cenocepacia infection. We report here that murine macrophages infected with B. cenocepacia K56-2 produce proinflammatory cytokine IL-1 beta in a TLR4 and caspase-1-mediated manner. We also determined that the OPS (O antigen) of B. cenocepacia LPS contributes to IL-1 beta production and pyroptotic cell death. Furthermore, we showed that the malfunction of the CFTR channel augmented IL-1 beta production upon B. cenocepacia infection of murine macrophages. Taken together, we identified eukaryotic and bacterial factors that contribute to inflammation during B. cenocepacia infection, which may aid in the design of novel approaches to control pulmonary inflammation. J. Leukoc. Biol. 89: 481-488; 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2'-Beta-D-arabinouridine (AraU), the uridine analogue of the anticancer agent AraC, was synthesized and evaluated for antiviral activity and cytotoxicity. In addition, a series of AraU monophosphate prodrugs in the form of triester phosphoramidates (ProTides) were also synthesized and tested against a range of viruses, leukaemia and solid tumour cell lines. Unfortunately, neither the parent compound (AraU) nor any of its ProTides showed antiviral activity, nor potent inhibitory activity against any of the cancer cell lines. Therefore, the metabolism of AraU phosphoramidates to release AraU monophosphate was investigated. The results showed carboxypeptidase Y, hog liver esterase and crude CEM tumor cell extracts to hydrolyse the ester motif of phosphoramidates with subsequent loss of the aryl group, while molecular modelling studies suggested that the AraU l-alanine aminoacyl phosphate derivative might not be a good substrate for the phosphoramidase enzyme Hint-1. These findings are in agreement with the observed disappearance of intact prodrug and concomitant appearance of the corresponding phosphoramidate intermediate derivative in CEM cell extracts without measurable formation of araU monophosphate. These findings may explain the poor antiviral/cytostatic potential of the prodrugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharide is a major component of the outer membrane of gram-negative bacteria and provides a permeability barrier to many commonly used antibiotics. ADP-heptose residues are an integral part of the LPS inner core, and mutants deficient in heptose biosynthesis demonstrate increased membrane permeability. The heptose biosynthesis pathway involves phosphorylation and dephosphorylation steps not found in other pathways for the synthesis of nucleotide sugar precursors. Consequently, the heptose biosynthetic pathway has been marked as a novel target for antibiotic adjuvants, which are compounds that facilitate and potentiate antibiotic activity. D-alpha,beta-D-heptose-1,7-bisphosphate phosphatase (GmhB) catalyzes the third essential step of LPS heptose biosynthesis. This study describes the first crystal structure of GmhB and enzymatic analysis of the protein. Structure-guided mutations followed by steady state kinetic analysis, together with established precedent for HAD phosphatases, suggest that GmhB functions through a phosphoaspartate intermediate. This study provides insight into the structure-function relationship of GmhB, a new target for combatting gram-negative bacterial infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Gal from UDP-Gal to the GlcNAc residue of a GlcNAc-pyrophosphate-lipid acceptor. A mutant strain with a defective wbbD gene was unable to form O7 LPS and lacked this specific galactosyltransferase activity. The normal phenotype was restored by complementing the mutant with the cloned wbbD gene. To characterize the WbbD galactosyltransferase, we used a novel acceptor substrate containing GlcNAcalpha-pyrophosphate covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-phenyl). The WbbD galactosyltransferase had optimal activity at pH 7 in the presence of 2.5 mM MnCl(2). Detergents in the assay did not increase glycosyl transfer. Digestion of enzyme product by highly purified bovine testicular beta-galactosidase demonstrated a beta-linkage. Cleavage of product by pyrophosphatase and phosphatase, followed by HPLC and NMR analyses, revealed a disaccharide with the structure Gal beta1-3GlcNAc. Our results conclusively demonstrate that WbbD is a UDP-Gal: GlcNAcalpha-pyrophosphate-R beta1,3-galactosyltransferase and suggest that the novel synthetic glycolipid acceptor may be generally applicable to characterize other bacterial glycosyltransferases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steps involved in the biosynthesis of the ADP-L-glycero-beta-D-manno-heptose (ADP-L-beta-D-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-D-beta-D-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-D-beta-D-heptose. Our results demonstrate that the synthesis of ADP-D-beta-D-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase), and GmhB (D,D-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-L-beta-D-heptose precursor utilized in the assembly of inner core LPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal vasoconstriction and reduced retinal blood flow precede the onset of diabetic retinopathy. The pathophysiological mechanisms that underlie increased retinal arteriolar tone during diabetes remain unclear. Normally, local Ca(2+) release events (Ca(2+)-sparks), trigger the activation of large-conductance Ca(2+)-activated K(+)(BK)-channels which hyperpolarize and relax vascular smooth muscle cells, thereby causing vasodilatation. In the present study, we examined BK channel function in retinal vascular smooth muscle cells from streptozotocin-induced diabetic rats. The BK channel inhibitor, Penitrem A, constricted nondiabetic retinal arterioles (pressurized to 70mmHg) by 28%. The BK current evoked by caffeine was dramatically reduced in retinal arterioles from diabetic animals even though caffeine-evoked [Ca(2+)](i) release was unaffected. Spontaneous BK currents were smaller in diabetic cells, but the amplitude of Ca(2+)-sparks was larger. The amplitudes of BK currents elicited by depolarizing voltage steps were similar in control and diabetic arterioles and mRNA expression of the pore-forming BKalpha subunit was unchanged. The Ca(2+)-sensitivity of single BK channels from diabetic retinal vascular smooth muscle cells was markedly reduced. The BKbeta1 subunit confers Ca(2+)-sensitivity to BK channel complexes and both transcript and protein levels for BKbeta1 were appreciably lower in diabetic retinal arterioles. The mean open times and the sensitivity of BK channels to tamoxifen were decreased in diabetic cells, consistent with a downregulation of BKbeta1 subunits. The potency of blockade by Pen A was lower for BK channels from diabetic animals. Thus, changes in the molecular composition of BK channels could account for retinal hypoperfusion in early diabetes, an idea having wider implications for the pathogenesis of diabetic hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies with erythropoiesis-stimulating agents claim that maintenance therapy of renal anaemia may be possible at extended dosing intervals; however, few studies were randomized, results varied, and comparisons between agents were absent. We report results of a multi-national, randomized, prospective trial comparing haemoglobin maintenance with methoxy polyethylene glycol-epoetin beta and darbepoetin alfa administered once monthly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of medical records of 45 of 53 hospitalised patients with positive cultures for CTX-M type ESBL-producing Escherichia coli between 01 January and 31 May 2004 was conducted. The mean age of the population studied was 73.1 (+/-14.6) years and the majority (55.6%) had been under the care of the internal medicine or elderly care service. In the majority (77.8%) of instances the isolate was attributed to a clinical infection rather than colonisation and the commonest clinical specimen to yield the organism was urine, which was positive in 57.8% of patients. Acquisition of the organism was categorised as nosocomial in 68.9% of patients; in this subgroup, the median duration of inpatient stay prior to recovery of the organism was 24 (range 3-240) days. Haemodialysis-dependence was the most common of the comorbidities evaluated. The mean number of antibiotics prescribed per patient in the 30 days prior to first isolation of the organism was 1.7 (range 0-4). Furthermore, the mean number of antibiotic-days exposure per patient during this period was 13.9 (range 0-48). The most frequently received class of antibiotic was beta-lactam/beta-lactamase inhibitor combinations. Of 35 infections, 26 (74.2%) were successfully treated. Overall 12 patients with infection died (34.3%); attributable mortality was presumed in seven (20%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new VITEK 2 antibiotic susceptibility testing (AST) card, AST N-054, was introduced for aerobic gram-negative bacilli in 2007 and has been widely adopted for routine use in the UK. We evaluated its performance for detecting extended-spectrum beta-lactamase (ESBL) production in Escherichia coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The objective of the present study was to study the relationship between hospital antibiotic use, community antibiotic use and the incidence of extended-spectrum beta-lactamase (ESBL)-producing bacteria in hospitals, while assessing the impact of a fluoroquinolone restriction policy on ESBL-producing bacteria incidence rates. METHODS: The study was retrospective and ecological in design. A multivariate autoregressive integrated moving average (ARIMA) model was built to relate antibiotic use to ESB-producing bacteria incidence rates and resistance patterns over a 5 year period (January 2005-December 2009). Results: Analysis showed that the hospital incidence of ESBLs had a positive relationship with the use of fluoroquinolones in the hospital (coefficient = 0.174, P= 0.02), amoxicillin-clavulanic acid in the community (coefficient = 1.03, P= 0.03) and mean co-morbidity scores for hospitalized patients (coefficient = 2.15, P= 0.03) with various time lags. The fluoroquinolone restriction policy was implemented successfully with the mean use of fluoroquinolones (mainly ciprofloxacin) being reduced from 133 to 17 defined daily doses (DDDs)/1000 bed days (P <0.001) and from 0.65 to 0.54 DDDs/1000 inhabitants/day (P= 0.0007), in both the hospital and its surrounding community, respectively. This was associated with an improved ciprofloxacin susceptibility in both settings [ciprofloxacin susceptibility being improved from 16% to 28% in the community (P <0.001)] and with a statistically significant reduction in ESBL-producing bacteria incidence rates. Discussion: This study supports the value of restricting the use of certain antimicrobial classes to control ESBL, and demonstrates the feasibility of reversing resistance patterns post successful antibiotic restriction. The study also highlights the potential value of the time-series analysis in designing efficient antibiotic stewardship. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: Histone deacetylase (HDAC)7 is expressed in the early stages of embryonic development and may play a role in endothelial function.

Objective: This study aimed to investigate the role of HDAC7 in endothelial cell (EC) proliferation and growth and the underlying mechanism.

Methods and Results: Overexpression of HDAC7 by adenoviral gene transfer suppressed human umbilical vein endothelial cell (HUVEC) proliferation by preventing nuclear translocation of ß-catenin and downregulation of T-cell factor-1/Id2 (inhibitor of DNA binding 2) and cyclin D1, leading to G1 phase elongation. Further assays with the TOPFLASH reporter and quantitative RT-PCR for other ß-catenin target genes such as Axin2 confirmed that overexpression of HDAC7 decreased ß-catenin activity. Knockdown of HDAC7 by lentiviral short hairpin RNA transfer induced ß-catenin nuclear translocation but downregulated cyclin D1, cyclin E1 and E2F2, causing HUVEC hypertrophy. Immunoprecipitation assay and mass spectrometry analysis revealed that HDAC7 directly binds to ß-catenin and forms a complex with 14-3-3 e, ?, and ? proteins. Vascular endothelial growth factor treatment induced HDAC7 degradation via PLC?-IP3K (phospholipase C?–inositol-1,4,5-trisphosphate kinase) signal pathway and partially rescued HDAC7-mediated suppression of proliferation. Moreover, vascular endothelial growth factor stimulation suppressed the binding of HDAC7 with ß-catenin, disrupting the complex and releasing ß-catenin to translocate into the nucleus.

Conclusions: These findings demonstrate that HDAC7 interacts with ß-catenin keeping ECs in a low proliferation stage and provides a novel insight into the mechanism of HDAC7-mediated signal pathways leading to endothelial growth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signalling interplay between transforming growth factor-beta (TGF beta) and CCN2 [also called connective tissue growth factor (CTGF)] plays a crucial role in the progression of diabetic nephropathy and has been implicated in cellular differentiation. To investigate the potential role of microRNAs (miRNAs) in the mediation of this signalling network, we performed miRNA screening in mesangial cells treated with recombinant human CCN2. Analysis revealed a cohort of 22 miRNAs differentially expressed by twofold or more, including members of the miR-302 family. Target analysis of miRNA to 3'-untranslated regions (3'-UTRs) identified TGF beta receptor II (T beta RII) as a potential miR-302 target. In mesangial cells, decreased T beta RII expression was confirmed in response to CCN2 together with increased expression of miR-302d. T beta RII was confirmed as an miR-302 target, and inhibition of miR-302d was sufficient to attenuate the effect of CCN2 on T beta RII. Data from the European Renal cDNA Biopsy Bank revealed decreased T beta RII in diabetic patients, suggesting pathophysiological significance. In a mouse model of fibrosis (UUO), miR-302d was increased, with decreased T beta RII expression and aberrant signalling, suggesting relevance in chronic fibrosis. miR-302d decreased TGF beta-induced epithelial mesenchymal transition (EMT) in renal HKC8 epithelial cells and attenuated TGF beta-induced mesangial production of fibronectin and thrombospondin. In summary, we demonstrate a new mode of regulation of TGF beta by CCN2, and conclude that the miR-302 family has a role in regulating growth factor signalling pathways, with implications for nephropathic cell fate transitions.