169 resultados para Synovitis, Infectious.
Resumo:
A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of drug metabolism. The cytochrome P450 (CYP 450) enzyme pathway was inhibited using ketoconazole (KTZ) to see whether a TCBZ-resistant isolate could be made more sensitive to TCBZ action. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible isolates were used for these experiments. The CYP 450 system was inhibited by a 2-h pre-incubation in ketoconazole (40 mu M), then incubated for a further 22 h in NCTC medium containing either KTZ, KTZ+nicotinamide adenine dinucleotide phosphate (NADPH) (1 nM), KTZ+NADPH+TCBZ (15 mu g/ml), or KTZ+NADPH+triclabendazole sulphoxide (TCBZ. SO; 15 mu g/ml). Changes to fluke ultrastructure following drug treatment and metabolic inhibition were assessed using transmission electron microscopy. After treatment with either TCBZ or TCBZ. SO on their own, there was greater disruption to the TCBZ-susceptible than TCBZ-resistant isolate. However, co-incubation with KTZ+TCBZ, but more particularly KTZ+TCBZ. SO, led to more severe changes to the TCBZ-resistant isolate than with each drug on its own: in the syncytium, for example, there was severe swelling of the basal infolds and their associated mucopolysaccharide masses, accompanied by an accumulation of secretory bodies just below the apex. Golgi complexes were greatly reduced or absent in the tegumental cells and the synthesis, production, and transport of secretory bodies were badly disrupted. With the TCBZ-susceptible Cullompton isolate, there was limited potentiation of drug action. The results support the concept of altered drug metabolism in TCBZ-resistant flukes and this process may play a role in the development of drug resistance.
Resumo:
A study has been carried out to determine whether the action of triclabendazole (TCBZ) against the liver fluke, Fasciola hepatica is altered by inhibition of the cytochrome P450 (CYP 450)-mediated drug metabolism pathway. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible fluke isolates were used for these experiments, the basic design of which is given in the paper by Devine et al. (2010a). Piperonyl butoxide (PB) was the CYP P450 inhibitor used. Morphological changes resulting from drug treatment and following metabolic inhibition were assessed by means of transmission electron microscopy. After treatment with either TCBZ or TCBZ.SO on their own, there was greater disruption to the TCBZ-susceptible than TCBZ-resistant isolate. However, co-incubation with PB+TCBZ, but more particularly PB+TCBZ.SO, led to greater changes to the TCBZ-resistant isolate than with each drug on its own, with blebbing of the apical plasma membrane, severe swelling of the basal infolds and their associated mucopolysaccharide masses in the syncytium and flooding in the internal tissues. Golgi complexes were greatly reduced or absent in the tegumental cells and the synthesis and production of secretory bodies were badly disrupted. The mitochondria were swollen throughout the tegumental system and the somatic muscle blocks were disrupted. With the TCBZ-susceptible Cullompton isolate, there was a limited increase in drug action following co-incubation with PB. The results provide evidence that the condition of a TCBZ-resistant fluke can be altered by inhibition of drug metabolism. Moreover, they support the concept that altered drug metabolism contributes to the mechanism of resistance to TCBZ