307 resultados para STARS: ATMOSPHERES
Resumo:
We present results from a search for additional transiting planets in 24 systems already known to contain a transiting planet. We model the transits due to the known planet in each system and subtract these models from light curves obtained with the SuperWASP (Wide Angle Search for Planets) survey instruments. These residual light curves are then searched for evidence of additional periodic transit events. Although we do not find any evidence for additional planets in any of the planetary systems studied, we are able to characterize our ability to find such planets by means of Monte Carlo simulations. Artificially generated transit signals corresponding to planets with a range of sizes and orbital periods were injected into the SuperWASP photometry and the resulting light curves searched for planets. As a result, the detection efficiency as a function of both the radius and orbital period of any second planet is calculated. We determine that there is a good (>50 per cent) chance of detecting additional, Saturn-sized planets in P ~ 10 d orbits around planet-hosting stars that have several seasons of SuperWASP photometry. Additionally, we confirm previous evidence of the rotational stellar variability of WASP-10, and refine the period of rotation. We find that the period of the rotation is 11.91 +/- 0.05 d, and the false alarm probability for this period is extremely low (~10-13).
Resumo:
The `hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born, or by an alternative mechanism such as planet-planet scattering. The hot Jupiters closest to their parent stars, at orbital distances of only ~0.02 astronomical units, have strong tidal interactions, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory. Here we report the discovery of planet WASP-18b with an orbital period of 0.94days and a mass of ten Jupiter masses (10MJup), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 106, as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System.
Resumo:
We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (~600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J - K colour with an rms scatter of only 2 per cent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling time-scale for angular momentum transport from a rapidly spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onwards stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of the order of 9 per cent (rms), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P ~ t0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.
Resumo:
Detection of Li-6 has been shown for energetic solar events, one chromospherically active binary, and several dwarf halo stars. We had previously found a Li-6/Li-7 = 0.03 +/- 0.01 for active K dwarf GJ 117 using VLT UVES observations. Here we present high signal-to-noise (> 1000) high spectral resolution observations taken with the McDonald Observatory's 2.7 m and echelle spectrometer of GJ 117. We have used the solar spectrum and template stars to eliminate possible blends, such as Ti I, in the Li-6 spectral region. Our new analysis, using an updated PHOENIX model atmosphere, finds Li-6/Li-7 = 0.05 +/- 0.02. In addition, bisector analysis showed no significant red asymmetries that would affect the lithium line profile. No changes above the statistical uncertainties are found between the VLT and McDonald data. The amount of Li-6 derived for GJ 117 is consistent with creation in spallation reactions on the stellar surface, but we caution that uncertainties in the continuum level may cause additional uncertainty in the Li-6 fraction.
Resumo:
Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the light curve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33 V = 8.3, v sini = 86 km s-1). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas-giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit, we directly derive the size of the planet, the inclination and obliquity of its orbital plane and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1MJupiter on the planet. We also find evidence of a third body of substellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars.
Resumo:
We present photometric and spectroscopic observations at optical and near-infrared wavelengths of the nearby type Ic supernova 2007gr. These represent the most extensive data-set to date of any supernova of this sub-type, with frequent coverage from shortly after discovery to more than one year post-explosion. We deduce a rise time to B-band maximum of 11.5 +/- 2.7 d. We find a peak B-band magnitude of M-B = -16.8, and light curves which are remarkably similar to the so-called "hypernova" SN 2002ap. In contrast, the spectra of SNe 2007gr and 2002ap show marked differences, not least in their respective expansion velocities. We attribute these differences primarily to the density profiles of their progenitor stars at the time of explosion i.e. a more compact star for SN 2007gr compared to SN 2002ap. From the quasi-bolometric light curve of SN 2007gr, we estimate that 0.076 +/- 0.010 M-circle dot of Ni-56 was produced in the explosion. Our near-infrared (IR) spectra clearly show the onset and disappearance of the first overtone of carbon monoxide (CO) between similar to 70 to 175 d relative to B-band maximum. The detection of the CO molecule implies that ionised He was not microscopically mixed within the carbon/oxygen layers. From the optical spectra, near-IR light curves, and colour evolution, we find no evidence for dust condensation in the ejecta out to about +400 d. Given the combination of unprecedented temporal coverage, and high signal-to-noise data, we suggest that SN 2007gr could be used as a template object for supernovae of this sub-class.
Resumo:
We present new photometric and spectroscopic observations of an unusual luminous blue variable (LBV) in NGC 3432, covering three major outbursts in 2008 October, 2009 April and 2009 November. Previously, this star experienced an outburst also in 2000 (known as SN 2000ch). During outbursts the star reached an absolute magnitude between -12.1 and -12.8. Its spectrum showed H, He I and Fe II lines with P-Cygni profiles during and soon after the eruptive phases, while only intermediate-width lines in pure emission (including He II lambda 4686) were visible during quiescence. The fast-evolving light curve soon after the outbursts, the quasi-modulated light curve, the peak magnitude and the overall spectral properties are consistent with multiple episodes of variability of an extremely active LBV. However, the widths of the spectral lines indicate unusually high wind velocities (1500-2800 km s-1), similar to those observed in Wolf-Rayet stars. Although modulated light curves are typical of LBVs during the S-Dor variability phase, the luminous maxima and the high frequency of outbursts are unexpected in S-Dor variables. Such extreme variability may be associated with repeated ejection episodes during a giant eruption of an LBV. Alternatively, it may be indicative of a high level of instability shortly preceding the core-collapse or due to interaction with a massive, binary companion. In this context, the variable in NGC 3432 shares some similarities with the famous stellar system HD 5980 in the Small Magellanic Cloud, which includes an erupting LBV and an early Wolf-Rayet star.
Resumo:
The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.
Resumo:
Using images from the Hubble Space Telescope and the Gemini Telescope, we confirmed the disappearance of the progenitors of two type II supernovae (SNe) and evaluated the presence of other stars associated with them. We found that the progenitor of SN 2003gd, an M-supergiant star, is no longer observed at the SN location and determined its intrinsic brightness using image subtraction techniques. The progenitor of SN 1993J, a K-supergiant star, is also no longer present, but its B-supergiant binary companion is still observed. The disappearance of the progenitors confirms that these two supernovae were produced by red supergiants.
Resumo:
We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-mag early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 ± 0.03 MJup and radius of 1.32 ± 0.08 RJup. The host star, WASP-26, has a mass of 1.12 ± 0.03 M? and a radius of 1.34 ± 0.06 R? and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 ± 15 pc and an age of 6 ± 2 Gy.
Resumo:
We announce the discovery of a new low-mass, pre-main sequence eclipsing binary, MML 53. Previous observations of MML 53 found it to be a pre-main sequence spectroscopic multiple associated with the 15-22 Myr Upper Centaurus-Lupus cluster. We identify the object as an eclipsing binary for the first time through the analysis of multiple seasons of time series photometry from the SuperWASP transiting planet survey. Re-analysis of a single archive spectrum shows MML 53 to be a spatially unresolved triple system of young stars which all exhibit significant lithium absorption. Two of the components comprise an eclipsing binary with period, P = 2.097891(6) ± 0.000005 and mass ratio, q ~ 0.8. Here, we present the analysis of the discovery data.
Resumo:
Context. Hot-Jupiter planets must form at large separations from their host stars where the temperatures are cool enough for their cores to condense. They then migrate inwards to their current observed orbital separations. Different theories of how this migration occurs lead to varying distributions of orbital eccentricity and the alignment between the rotation axis of the star and the orbital axis of the planet. Aims: The spin-orbit alignment of a transiting system is revealed via the Rossiter-McLaughlin effect, which is the anomaly present in the radial velocity measurements of the rotating star during transit due to the planet blocking some of the starlight. In this paper we aim to measure the spin-orbit alignment of the WASP-3 system via a new way of analysing the Rossiter-McLaughlin observations. Methods: We apply a new tomographic method for analysing the time variable asymmetry of stellar line profiles caused by the Rossiter-McLaughlin effect. This new method eliminates the systematic error inherent in previous methods used to analyse the effect. Results: We find a value for the projected stellar spin rate of v sin i = 13.9 ± 0.03 km s-1 which is in agreement with previous measurements but has a much higher precision. The system is found to be well aligned, with ? = 5-5+6° which favours an evolutionary history for WASP-3b involving migration through tidal interactions with a protoplanetary disc. From comparison with isochrones we put an upper limit on the age of the star of 2 Gyr.
Resumo:
SuWt 2 is a planetary nebula (PN) consisting of a bright ionized thin ring seen nearly edge-on, with much fainter bipolar lobes extending perpendicularly to the ring. It has a bright (12th magnitude) central star, too cool to ionize the PN, which we discovered in the early 1990s to be an eclipsing binary. Although it was anticipated that there would also be an optically faint, hot, ionizing star in the system, a spectrum from the International Ultraviolet Explorer (IUE) did not reveal a UV source. We present extensive ground-based photometry and spectroscopy of the central binary collected over the ensuing two decades, resulting in the determination that the orbital period of the eclipsing pair is 4.9 days, and that it consists of two nearly identical A1 V stars, each of mass ~2.7 M sun. The physical parameters of the A stars, combined with evolutionary tracks, show that both are in the short-lived "blue-hook" evolutionary phase that occurs between the main sequence and the Hertzsprung gap, and that the age of the system is about 520 Myr. One puzzle is that the stars' rotational velocities are different from each other, and considerably slower than synchronous with the orbital period. It is possible that the center-of-mass velocity of the eclipsing pair is varying with time, suggesting that there is an unseen third orbiting body in the system. We propose a scenario in which the system began as a hierarchical triple, consisting of a ~2.9 M sun star orbiting the close pair of A stars. Upon reaching the asymptotic giant branch stage, the primary engulfed the pair into a common envelope, leading to a rapid contraction of the orbit and catastrophic ejection of the envelope into the orbital plane. In this picture, the exposed core of the initial primary is now a white dwarf of ~0.7 M sun, orbiting the eclipsing pair, which has already cooled below the detectability possible by IUE at our derived distance of 2.3 kpc and a reddening of E(B - V) = 0.40. The SuWt 2 system may be destined to perish as a Type Ia supernova.
Resumo:
We report the discovery of a Saturn-sized planet transiting a V = 11.3, K4 dwarf star every 3.9 days. WASP-29b has a mass of 0.24 ± 0.02 M Jup and a radius of 0.79 ± 0.05 R Jup, making it the smallest planet so far discovered by the WASP survey, and the exoplanet most similar in mass and radius to Saturn. The host star WASP-29 has an above-solar metallicity and fits a possible correlation for Saturn-mass planets such that planets with higher-metallicity host stars have higher core masses and thus smaller radii.
Resumo:
ABSTRACT We present the first detailed spatiokinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrow-band imaging in the light of [NII]6584Å, [OIII]5007 Å and [SII]6717+6731Å, obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionization structure of Abell 41. Long-slit observations of the Ha and [NII]6584Å emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro Mártir Telescope. These spectra, combined with the narrow-band imagery, were used to develop a spatiokinematical model of [NII]6584Å emission from Abell 41. The best-fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40 km s-1 at the waist. The symmetry axis of the model nebula is within 5° of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally.