174 resultados para Referencia virtual
Design of a Virtual Reality Framework for Maintainability and assemblability test of complex systems
Resumo:
This paper presents a unique environment whose features are able to satisfy requirements for both virtual maintenance and virtual manufacturing through the conception of original virtual reality (VR) architecture. Virtual Reality for the Maintainability and Assemblability Tests (VR_MATE) encompasses VR hardware and software and a simulation manager which allows customisation of the architecture itself as well as interfacing with a wide range of devices employed in the simulations. Two case studies are presented to illustrate VR_MATE's unique ability to allow for both maintainability tests and assembly analysis of an aircraft carriage and a railway coach cooling system respectively. The key impact of this research is the demonstration of the potentialities of using VR techniques in industry and its multiple applications despite the subjective character within the simulation. VR_MATE has been presented as a framework to support the strategic and operative objectives of companies to reduce product development time and costs whilst maintaining product quality for applications which would be too expensive to simulate and evaluate in the real world.
Resumo:
The recent drive towards timely multiple product realizations has caused most Manufacturing Enterprises (MEs) to develop more flexible assembly lines supported by better manufacturing design and planning. The aim of this work is to develop a methodology which will support feasibility analyses of assembly tasks, in order to simulate either a manufacturing process or a single work-cell in which digital human models act. The methodology has been applied in a case study relating to a railway industry. Simulations were applied to help standardize the methodology and suggest new solutions for realizing ergonomic and efficient assembly processes in the railway industry.
Resumo:
Research in the field of sports performance is constantly developing new technology to help extract meaningful data to aid in understanding in a multitude of areas such as improving technical or motor performance. Video playback has previously been extensively used for exploring anticipatory behaviour. However, when using such systems, perception is not active. This loses key information that only emerges from the dynamics of the action unfolding over time and the active perception of the observer. Virtual reality (VR) may be used to overcome such issues. This paper presents the architecture and initial implementation of a novel VR cricket simulator, utilising state of the art motion capture technology (21 Vicon cameras capturing kinematic profile of elite bowlers) and emerging VR technology (Intersense IS-900 tracking combined with Qualisys Motion capture cameras with visual display via Sony Head Mounted Display HMZ-T1), applied in a cricket scenario to examine varying components of decision and action for cricket batters. This provided an experience with a high level of presence allowing for a real-time egocentric view-point to be presented to participants. Cyclical user-testing was carried out, utilisng both qualitative and quantitative approaches, with users reporting a positive experience in use of the system.