195 resultados para Radiology
Resumo:
To describe the patterns of use, clinical outcomes, and dose-volume histogram parameters of high-dose-rate interstitial brachytherapy (HDR-ISBT) in the management of Bartholin's gland cancer.
Resumo:
AIMS: To investigate the potential dosimetric and clinical benefits predicted by using four-dimensional computed tomography (4DCT) compared with 3DCT in the planning of radical radiotherapy for non-small cell lung cancer.
MATERIALS AND METHODS:
Twenty patients were planned using free breathing 4DCT then retrospectively delineated on three-dimensional helical scan sets (3DCT). Beam arrangement and total dose (55 Gy in 20 fractions) were matched for 3D and 4D plans. Plans were compared for differences in planning target volume (PTV) geometrics and normal tissue complication probability (NTCP) for organs at risk using dose volume histograms. Tumour control probability and NTCP were modelled using the Lyman-Kutcher-Burman (LKB) model. This was compared with a predictive clinical algorithm (Maastro), which is based on patient characteristics, including: age, performance status, smoking history, lung function, tumour staging and concomitant chemotherapy, to predict survival and toxicity outcomes. Potential therapeutic gains were investigated by applying isotoxic dose escalation to both plans using constraints for mean lung dose (18 Gy), oesophageal maximum (70 Gy) and spinal cord maximum (48 Gy).
RESULTS:
4DCT based plans had lower PTV volumes, a lower dose to organs at risk and lower predicted NTCP rates on LKB modelling (P < 0.006). The clinical algorithm showed no difference for predicted 2-year survival and dyspnoea rates between the groups, but did predict for lower oesophageal toxicity with 4DCT plans (P = 0.001). There was no correlation between LKB modelling and the clinical algorithm for lung toxicity or survival. Dose escalation was possible in 15/20 cases, with a mean increase in dose by a factor of 1.19 (10.45 Gy) using 4DCT compared with 3DCT plans.
CONCLUSIONS:
4DCT can theoretically improve therapeutic ratio and dose escalation based on dosimetric parameters and mathematical modelling. However, when individual characteristics are incorporated, this gain may be less evident in terms of survival and dyspnoea rates. 4DCT allows potential for isotoxic dose escalation, which may lead to improved local control and better overall survival.
Resumo:
Objective: The aim of this study was to investigate the effect of pre-treatment verification imaging with megavoltage (MV) X-rays on cancer and normal cell survival in vitro and to compare the findings with theoretically modelled data. Since the dose received from pre-treatment imaging can be significant, incorporation of this dose at the planning stage of treatment has been suggested.
Methods: The impact of imaging dose incorporation on cell survival was investigated by clonogenic assay, irradiating DU-145 prostate cancer, H460 non-small cell lung cancer and AGO-1522b normal tissue fibroblast cells. Clinically relevant imaging-to-treatment times of 7.5 minutes and 15 minutes were chosen for this study. The theoretical magnitude of the loss of radiobiological efficacy due to sublethal damage repair was investigated using the Lea-Catcheside dose protraction factor model.
Results: For the cell lines investigated, the experimental data showed that imaging dose incorporation had no significant impact upon cell survival. These findings were in close agreement with the theoretical results.
Conclusions: For the conditions investigated, the results suggest that allowance for the imaging dose at the planning stage of treatment should not adversely affect treatment efficacy.
Advances in Knowledge: There is a paucity of data in the literature on imaging effects in radiotherapy. This paper presents a systematic study of imaging dose effects on cancer and normal cell survival, providing both theoretical and experimental evidence for clinically relevant imaging doses and imaging-to-treatment times. The data provide a firm foundation for further study into this highly relevant area of research.
Resumo:
Efficacy of inverse planning is becoming increasingly important for advanced radiotherapy techniques. This study's aims were to validate multicriteria optimization (MCO) in RayStation (v2.4, RaySearch Laboratories, Sweden) against standard intensity-modulated radiation therapy (IMRT) optimization in Oncentra (v4.1, Nucletron BV, the Netherlands) and characterize dose differences due to conversion of navigated MCO plans into deliverable multileaf collimator apertures. Step-and-shoot IMRT plans were created for 10 patients with localized prostate cancer using both standard optimization and MCO. Acceptable standard IMRT plans with minimal average rectal dose were chosen for comparison with deliverable MCO plans. The trade-off was, for the MCO plans, managed through a user interface that permits continuous navigation between fluence-based plans. Navigated MCO plans were made deliverable at incremental steps along a trajectory between maximal target homogeneity and maximal rectal sparing. Dosimetric differences between navigated and deliverable MCO plans were also quantified. MCO plans, chosen as acceptable under navigated and deliverable conditions resulted in similar rectal sparing compared with standard optimization (33.7 ± 1.8Gy vs 35.5 ± 4.2Gy, p = 0.117). The dose differences between navigated and deliverable MCO plans increased as higher priority was placed on rectal avoidance. If the best possible deliverable MCO was chosen, a significant reduction in rectal dose was observed in comparison with standard optimization (30.6 ± 1.4Gy vs 35.5 ± 4.2Gy, p = 0.047). Improvements were, however, to some extent, at the expense of less conformal dose distributions, which resulted in significantly higher doses to the bladder for 2 of the 3 tolerance levels. In conclusion, similar IMRT plans can be created for patients with prostate cancer using MCO compared with standard optimization. Limitations exist within MCO regarding conversion of navigated plans to deliverable apertures, particularly for plans that emphasize avoidance of critical structures. Minimizing these differences would result in better quality treatments for patients with prostate cancer who were treated with radiotherapy using MCO plans.
Resumo:
Intrafraction tumour motion is an issue that is of increased interest in the era of image-guided radiotherapy. It is particularly relevant for non-small cell lung cancer, for which a number of recent developments are in use to aid with motion management in the delivery of radical radiotherapy. The ability to deliver hypofractionated ablative doses, such as in stereotactic radiotherapy, has been aided by improvements in the ability to analyse tumour motion and amend treatment delivery. In addition, accounting for tumour motion can enable dose escalation to occur by reducing the normal tissue being irradiated by virtue of a reduction in target volumes. Motion management for lung tumours incorporates five key components: imaging, breath-hold techniques, abdominal compression, respiratory tracking and respiratory gating. These will be described, together with the relevant benefits and associated complexities. Many studies have described improved dosimetric coverage and reduced normal tissue complication probability rates when using motion management techniques. Despite the widespread uptake of many of these techniques, there is a paucity of literature reporting improved outcome in overall survival and local control for patients whenever motion management techniques are used. This overview will review the extent of lung tumour motion, ways in which motion is detected and summarise the key methods used in motion management.
Resumo:
AIMS: High local control rates are achieved in stage I lung cancer using
stereotactic ablative radiotherapy. Target delineation is commonly based on
four-dimensional computed tomography (CT) scans. Target volumes defined by
positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional')
(18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT.
MATERIALS AND METHODS: For 16 stage I non-small cell lung cancer tumours, six
approaches for deriving PET target volumes were evaluated: manual contouring,
standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV
(35%SUV(MAX)), 41% of SUV(MAX) (41%SUV(MAX)) and two different source to
background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum
intensity projection (MIP(MOD) ITV). Volumetric and positional correlation was
assessed using the Dice similarity coefficient (DSC).
RESULTS: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP(MOD) ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV(MAX) = 0.63, 41%SUV(MAX) = 0.57. SBR-1 = 0.52, SBR-2 =0.49. PET-based target volumes were smaller than corresponding MIP ITVs.
CONCLUSIONS: Conventional three-dimensional (18)F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use
(MIP(MOD) ITV). Caution is required in using three-dimensional PET for motion
encompassing target volume delineation.
Resumo:
Doses from CT examinations are difficult to estimate. However, they are requested more frequently due to the increase in CT examinations. In particular, fetal dose estimations are frequently required for patients who have discovered, subsequent to the examination, that they were pregnant when the examination was conducted. A computer model has been developed to facilitate such dose calculations. This model combines empirical beam data with anatomical information. The model has been verified using thermoluminescent dosemeter (TLD) readings of internal and surface dose from both phantoms and patients, including intrauterine doses for patients undergoing afterloading gynaecological intracavitary treatment. Although only limited experimental data were available, the results indicate that the model accurately predicts uterine doses within acceptable errors. This approach has been validated for fetal dose estimation. The model was also used in a comparison with the nationally available CT dose data from the National Radiological Protection Board (NRPB). The two models were found to be in agreement for fetal dose estimations.
Resumo:
OBJECTIVE: To assess the effectiveness of n-butyl-2-cyanoacrylate glue compared with microsuturing technique in peripheral nerve reanastomosis in rats.
STUDY DESIGN: Fourteen young adult white rats were used. Bilateral sciatic neurotomies were performed in 12 of them and then reanastomosed with 3 epineural microsutures in the right side (study group G1) and with n-butyl-2-cyanoacrylate glue in the left side (study group G2). On the remaining 2 rats (control group G3), sham surgery was done on both sides. Biopsies were harvested 12 weeks after surgery and examined under light microscope using Osmic acid stains. The number of nerve fibers was counted in the distal and proximal nerve segments, and the results were analyzed and compared in all groups.
RESULTS: Adequate regeneration with no anastomotic ruptures was seen 12 weeks after surgery in G1 and G2. The histomorphometric assessment showed no statistically significant difference (P = .960) in the neurotization index of G1 (89.01%) compared with G2 (88.97%). There was a significant (P = .001) reduction in the mean number of axon counts distal to the repair in G1 (271.3) and G2 (272.8) compared with that of the proximal segments of each study group (304.6 and 303, respectively, as well as to that of G3 (348.5).
CONCLUSION: Both n-butyl-2-cyanoacrylate adhesive and 3-microsuture techniques showed comparable neurotization indices and were equally adequate to stabilize the nerve during regeneration period.
Resumo:
A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed.
Resumo:
Objective:
The aim of this study was to identify sources of anatomical misrepresentation due to the location of camera mounting, tumour motion velocity and image processing artefacts in order to optimise the 4DCT scan protocol and improve geometrical-temporal accuracy.
Methods:A phantom with an imaging insert was driven with a sinusoidal superior-inferior motion of varying amplitude and period for 4DCT scanning. The length of a high density cube within the insert was measured using treatment planning software to determine the accuracy of its spatial representation. Scan parameters were varied including the tube rotation period and the cine time between reconstructed images. A CT image quality phantom was used to measure various image quality signatures under the scan parameters tested.
Results:No significant difference in spatial accuracy was found for 4DCT scans carried out using the wall mounted or couch mounted camera for sinusoidal target motion. Greater spatial accuracy was found for 4DCT scans carried out using a tube rotation speed of 0.5s rather than 1.0s. The reduction in image quality when using a faster rotation speed was not enough to require an increase in patient dose.
Conclusions:4DCT accuracy may be increased by optimising scan parameters, including choosing faster tube rotation speeds. Peak misidentification in the recorded breathing trace leads to spatial artefacts and this risk can be reduced by using a couch mounted infrared camera.
Advances in knowledge:This study explicitly shows that 4DCT scan accuracy is improved by scanning with a faster CT tube rotation speed.
Resumo:
Title Evaluation of Multidisciplinary Delivery of Surgical Anatomy Teaching
Authors Walsh I.K., Taylor S.J., Dorman A, Boohan M.
Objectives To evaluate the efficacy of newly introduced multidisciplinary methods to deliver Surgical Anatomy teaching to undergraduate medical students.
Design and Setting Qualitative and quantitative study using questionnaires and focus groups, employing students of the perioperative and emergency medicine (POEM) module of the phase 4 undergraduate medical curriculum at Queen’s University Belfast.
Outcome Measures To determine:
(1) if multidisciplinary teaching is effective in delivering surgical anatomy teaching,
(2) student’s learning preferences regarding this teaching method.
Results The questionnaire response rate was 89% (216 of 244 students; female: male ratio 1.25) and 42 students participated in 6 focus groups. Mean questionnaire responses indicated a favourable opinion on quality assurance items and multidisciplinary teaching. 81% of students agreed that multidisciplinary teaching enhanced learning and 86% felt that this did not adversely affect interaction. A positive contribution towards POEM learning was reported for Radiology (95% of students), Anatomy (93%) and Surgery (78%). The benefits of multidisciplinary teaching were congruent for Anatomy, Radiology and Surgery with 78% of students indicating a perceived favourable association with learning. Multidisciplinary teaching was not associated with diluted interaction, with 62% of students describing interaction as sufficient. 88% of students positively ranked tutor characteristics of enthusiasm and encouragement as being strongly associated with teacher quality. Positive perception of overall quality was strongly associated with learning preferences as well as more generic quality assurance issues (80% students; alpha coefficient 0.83).
The results were supported by triangulation of the above quantitative data with qualitative data generated by the focus groups. Whilst students frequently misunderstood the meaning of “multidisciplinary teaching”, there was an appreciation of the method’s worth; students recognised and valued the relevance of Anatomy, Radiology and Surgery teaching to POEM learning. The importance of vertically integrating Anatomy into all stages of the undergraduate curriculum was especially recognised.
Reference Aarnio M, Nieminen J, Pyorala E, Lindbolm-Ylanne S. Motivating medical students to learn. 2010 Med Teach;32(4):199-204.