307 resultados para Radiation workers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation biophysics has sought to understand at a molecular level, the mechanisms through which ionizing radiations damage DNA, and other molecules within living cells. The complexity of lesions produced in the DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. To study the relationship between the energy deposited and the damage produced, we have developed novel techniques for irradiating dry prasmid DNA, partially re-hydrated DNA and DNA in solution using monochromatic vacuum-UV synchrotron radiation. We have used photons in the energy range 7-150 eV, corresponding to the range of energies typically involved in the efficient production of DNA single-strand (SSB), and double-strand breaks (DSB) by ionizing radiation. The data show that both types of breaks are produced at all energies investigated (with, or without water present). Also, the energy dependence for DSB induction follows a similar trend to SSB induction but at a 20-30-fold reduced incidence, suggesting a common precursor for both types of damage. Preliminary studies where DNA has been irradiated in solution indicate a change in the shape of the dose-effect curve (from linear, to linear-quadratic for double-strand break induction) and a large increase in sensitivity due to the presence of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent track structure modelling studies indicate that radiation induced damage to DNA consists of a spectrum of different lesions of varying complexity. There is considerable evidence to suggest that, in repair-proficient systems, it is only the small proportion of more complex forms that is responsible for most of the biological effect. The complex lesions induced consist initially of clustered radical sites and a knowledge of their special chemistry is important in modelling how they react to form the more stable products that are processed by the repair systems. However, much of the current understanding of the chemical stage of radiation has developed from single-radical systems and there is a need to translate this to the more complex reactions that are likely to occur at the important multiple radical sites. With low LET radiation, DNA dsb may derive either from single-radical attack that damages both strands by a transfer mechanism, or from pairs of radical sites induced in close proximity, with one or more radical on each strand. With high LET radiation, modelling studies indicate that there is an increased probability of dsb arising from sites with more than two radical centres, leading to a greater frequency of more complex types of break. The spectrum of these lesions depends on the overall outcome of consecutive physical and chemical processes. The initial pattern of radical damage is determined by the energy depositions on and around the DNA, according to the type of radiation. This pattern is then modified by scavengers that inhibit the formation of radicals on the DNA, and by agents that either chemically repair (e.g. thiols) or fix (e.g. oxygen) a large fraction of these radicals. The reaction kinetics associated with clustered radical sites will differ from those of single sites: (1) because of the opportunities for interactions between the radicals themselves; and (2) because certain endpoints, e.g. a dsb, may require a combination of the products of two or more radicals. Fast response techniques using pulsed low and high LET irradiation have been established to measure the reactions of radical sites on pBR322 plasmid DNA with oxygen and thiols with a view to obtaining information about cluster size. This paper describes experimental approaches to explore the role of the chemical stage of the radiation effect in relation to lesion complexity.