261 resultados para Plastics Biodegradation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contact friction plays a critical role in all the major thermoforming processes for polymers. However, these effects are very difficult to measure in practice and, as a result, have received little scientific investigation. In this work, two independently developed test methods for the measurement of elevated temperature polymer-to-polymer contact friction are presented, and their results are compared in detail for the first time. One is based on a modified moving sled friction test, whereas the other uses a rotational rheometer. In each case, friction tests were conducted between two plug and two sheet materials. The results show that broadly similar coefficients of friction were obtained from the two test methods. The measured values were quite low (<0.3) at lower temperatures and typically were higher for polypropylene (PP) sheet than for polystyrene (PS). On approaching the glass transition temperature for PS (95°C) and the crystalline melting point for PP (165°C), the friction coefficients rose very sharply, and both test techniques became increasingly unreliable. It was concluded that despite their physical differences, both test techniques were able to capture the highly temperature sensitive nature of friction between polymer materials used in thermoforming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyamide and polystyrene particles were coated with titanium dioxide films by atomic layer deposition (ALD) and then melt-compounded to form polymer nanocomposites. The rheological properties of the ALD-created nanocomposite materials were characterized with a melt flow indexer, a melt flow spiral mould, and a rotational rheometer. The results suggest that the melt flow properties of polyamide nanocomposites were markedly better than those of pure polyamide and polystyrene nanocomposites. Such behavior was shown to originate in an uncontrollable decrease in the polyamide molecular weight, likely affected by a high thin-film impurity content, as shown in gel permeation chromatography (GPC) and scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer. Transmission electron microscope image showed that a thin film grew on both studied polymer particles, and that subsequent melt-compounding was successful, producing well dispersed ribbon-like titanium dioxide with the titanium dioxide filler content ranging from 0.06 to 1.12wt%. Even though we used nanofillers with a high aspect ratio, they had only a minor effect on the tensile and flexural properties of the polystyrene nanocomposites. The mechanical behavior of polyamide nanocomposites was more complex because of the molecular weight degradation. Our approach here to form polymeric nanocomposites is one way to tailor ceramic nanofillers and form homogenous polymer nanocomposites with minimal work-related risks in handling powder form nanofillers. However, further research is needed to gauge the commercial potential of ALD-created nanocomposite materials. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the question of the observed pinning of 1/2

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioresorbable polymers such as polylactide (PIA) and polylactide-co-glycolide (PLGA) have been used successfully as biomaterials in a wide range of medical applications. However, their slow degradation rates and propensity to lose strength before mass have caused problems. A central challenge for the development of these materials is the assurance of consistent and predictable in vivo degradation. Previous work has illustrated the potential to influence polymer degradation using electron beam (e-beam) radiation. The work addressed in this paper investigates further the utilisation of e-beam radiation in order to achieve a more surface specific effect. Variation of e-beam energy was studied as a means to control the effective penetrative depth in poly-L-lactide (PLEA). PLEA samples were exposed to e-beam radiation at individual energies of 0.5 MeV, 0.75 MeV and 1.5 MeV. The near-surface region of the PLEA samples was shown to be affected by e-beam irradiation with induced changes in molecular weight, morphology, flexural strength and degradation profile. Moreover, the depth to which the physical properties of the polymer were affected is dependent on the beam energy used. Computer modelling of the transmission of each e-beam energy level used corresponded well with these findings. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicone elastomer systems have previously been shown to offer potential for the sustained release of protein therapeutics. However, the general requirement for the incorporation of large amounts of release enhancing solid excipients to achieve therapeutically effective release rates from these otherwise hydrophobic polymer systems can detrimentally affect the viscosity of the precure silicone elastomer mixture and its curing characteristics. The increase in viscosity necessitates the use of higher operating pressures in manufacture, resulting in higher shear stresses that are often detrimental to the structural integrity of the incorporated protein. The addition of liquid silicones increases the initial tan delta value and the tan delta values in the early stages of curing by increasing the liquid character (G '') of the silicone elastomer system and reducing its elastic character (G'), thereby reducing the shear stress placed on the formulation during manufacture and minimizing the potential for protein degradation. However, SEM analysis has demonstrated that if the liquid character of the silicone elastomer is too high, the formulation will be unable to fill the mold during manufacture. This study demonstrates that incorporation of liquid hydroxy-terminated polydimethylsiloxanes into addition-cure silicone elastomer-covered rod formulations can both effectively lower the viscosity of the precured silicone elastomer and enhance the release rate of the model therapeutic protein bovine serum albumin. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure evolution of a 10Cr ferritic/martensitic heat-resistant steel during creep at 600°C was investigated in this work. Creep tests demonstrated that the 10Cr steel had higher creep strength than conventional ASME-P92 steel at 600°C. The microstructure after creep was studied by transmission electron microscopy, scanning electron microscopy and electron probe microanalysis. It was revealed that the martensitic laths were coarsened with time and eventually developed into subgrains after 8354 h. Laves phase was observed to grow and cluster along the prior austenite grain boundaries during creep and caused the fluctuation of solution and precipitation strengthening effects, which was responsible for the two slope changes on the creep rupture strength vs rupture time curve. It was also revealed that the microstructure evolution could be accelerated by stress, which resulted in the lower hardness in the deformed part of the creep specimen, compared with the aging part.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Injection-molded short- and long-glass fiber/polyamide 6,6 composites were subjected to tensile tests. To measure the effectiveness of the fibers in reinforcing the composites, a computational approach was employed to compute the fiber– matrix ISS, orientation factor, reinforcement efficiency, tensile-, and fiber length-related properties. Although the LFCs showed great improvement in fiber characteristics compared to the SFCs, enhancement in tensile properties was small, which is believed to be due to the larger fiber diameter. Kelly–Tyson model provides good approximation for the computation of ISS and tensile-related properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is concerned with understanding the behavior of polyethylene terephthalate (PET) in the injection stretch blow molding (ISBM) process where it is typically biaxially stretched to form bottles for the packaging industry. A comprehensive experimental study was undertaken, analyzing the behavior of three different grades of PET under constant width (CW), simultaneous (EB), and sequential (SQ) equal biaxial deformation. Experiments were carried out at temperature and strain rate ranges of 80–110C and 1 /s to 32 /s, respectively, to different stretch ratios. Results show that the biaxial deformation behavior of PET exhibits a strong dependency on forming temperature, strain rate, stretch ratio,deformation mode, and molecular weight. The tests were also monitored via a high speed thermal image camera which showed an increase in temperature between 5C and 15C observed depending on the stretch conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites of poly(ethylene terephthalate) PET with a partially synthetic fluoromica were prepared by melt mixing and extruded into sheet and subjected to large-scale biaxial stretching. Transmission electron microscopy (TEM) analysis of the mica tactoids showed that biaxial stretching had caused the tactoids to be more orientated and with improved exfoliation. The moduli of the nanocomposites were enhanced with increasing mica loading and the reinforcement effect was higher when the stretch ratio was 2 or 2.5, accommodated by having more aligned tactoids and reduced agglomeration. Enhancement in modulus was less pronounced for a stretch ratio of 3. Storage modulus was enhanced more significantly above the glass transition temperature. The barrier properties were enhanced by addition of mica before and after stretching. The Halpin-Tsai theory underpredicted the relative modulus of the PET nanocomposites, whereas the Nielsen model over-predicted the relative permeability. POLYM. ENG. SCI., 2012. (c) 2011 Society of Plastics Engineers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In spite of intensive research, computational modeling of the injection stretch blow molding (ISBM) still cannot match the accuracy of other polymer processes such as injection molding. There is a lack of understanding of the interdependence among the machine parameters set up by the operators, process parameters, material behavior, and the resulting final thickness distribution and performance of the molded product. The work presented in this paper describes a set of instrumentation tools developed for investigation of the ISBM process in an industrial setting. Results are presented showing the pressure and air temperature evolution inside the mold, the stretch rod force and displacement history, and the moment of contact of the polymer with seven discrete locations on the mold.