171 resultados para Networking and Communications


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we introduce a statistical data-correction framework that aims at improving the DSP system performance in presence of unreliable memories. The proposed signal processing framework implements best-effort error mitigation for signals that are corrupted by defects in unreliable storage arrays using a statistical correction function extracted from the signal statistics, a data-corruption model, and an application-specific cost function. An application example to communication systems demonstrates the efficacy of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High Efficiency Video Coding (HEVC) is the most recent video codec coming after currently most popular H.264/MPEG4 codecs and has promising compression capabilities. It is conjectured that it will be a substitute for current video compression standards. However, to the best knowledge of the authors, none of the current video steganalysis methods designed or tested with HEVC video. In this paper, pixel domain steganography applied on HEVC video is targeted for the first time. Also, its the first paper that employs accordion unfolding transformation, which merges temporal and spatial correlation, in pixel domain video steganalysis. With help of the transformation, temporal correlation is incorporated into the system. Its demonstrated for three different feature sets that integrating temporal dependency substantially increased the detection accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyber-security research in the field of smart grids is often performed with a focus on either the power and control domain or the Information and Communications Technology (ICT) domain. The characteristics of the power equipment or ICT domain are commonly not collectively considered. This work provides an analysis of the physical effects of cyber-attacks on microgrids – a smart grid construct that allows continued power supply when disconnected from a main grid. Different types of microgrid operations are explained (connected, islanded and synchronous-islanding) and potential cyber-attacks and their physical effects are analyzed. A testbed that is based on physical power and ICT equipment is presented to validate the results in both the physical and ICT domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Presents the introductory welcome message from the conference proceedings. May include the conference officers' congratulations to all involved with the conference event and publication of the proceedings record.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The myriad of technologies and protocols working at different layers pose significant security challenges in the upcoming Internet of Things (IoT) paradigm. Security features and needs vary from application to application and it is layer specific. In addition, security has to consider the constraints imposed by energy limited sensor nodes and consider the specific target application in order to provide security at different layers. This paper analyses current standardization efforts and protocols. It proposes a generic secured network topology for IoT and describes the relevant security challenges. Some exploitation examples are also provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to exchange keys between users is vital in any wireless based security system. A key generation technique which exploits the randomness of the wireless channel is a promising alternative to existing key distribution techniques, e.g., public key cryptography. In this paper, a secure key generation scheme based on the subcarriers' channel responses in orthogonal frequency-division multiplexing (OFDM) systems is proposed. We first implement a time-variant multipath channel with its channel impulse response modelled as a wide sense stationary (WSS) uncorrelated scattering random process and demonstrate that each subcarrier's channel response is also a WSS random process. We then define the X% coherence time as the time required to produce an X% correlation coefficient in the autocorrelation function (ACF) of each channel tap, and find that when all the channel taps have the same Doppler power spectrum, all subcarriers' channel responses has the same ACF as the channel taps. The subcarrier's channel response is then sampled every X% coherence time and quantized into key bits. All the key sequences' randomness is tested using National Institute of Standards and Technology (NIST) statistical test suite and the results indicate that the commonly used sampling interval as 50% coherence time cannot guarantee the randomness of the key sequence.