169 resultados para NOD mice


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Murid gammaherpesvirus 4 (MuHV-4) is widely used as a small animal model for understanding gammaherpesvirus infections in man. However, there have been no epidemiological studies of the virus in wild populations of small mammals. As MuHV-4 both infects cells associated with the respiratory and immune systems and attempts to evade immune control via various molecular mechanisms, infection may reduce immunocompetence with potentially serious fitness consequences for individuals. Here we report a longitudinal study of antibody to MuHV-4 in a mixed assemblage of bank voles (Clethrionomys glareolus) and wood mice (Apodemus sylvaticus) in the UK. The study was conducted between April 2001 and March 2004. Seroprevalence was higher in wood mice than bank voles, supporting earlier work that suggested wood mice were the major host even though the virus was originally isolated from a bank vole. Analyses of both the probability of having antibodies and the probability of initial seroconversion indicated no clear seasonal pattern or relationship with host density. Instead, infection risk was most closely associated with individual characteristics, with heavier males having the highest risk. This may reflect individual variation in susceptibility, potentially related to variability in the ability to mount an effective immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-amyloid1-42 (Aβ1-42) is a major endogenous pathogen underlying the aetiology of Alzheimer's disease (AD). Recent evidence indicates that soluble Aβ oligomers, rather than plaques, are the major cause of synaptic dysfunction and neurodegeneration. Small molecules that suppress Aβ aggregation, reduce oligomer stability or promote off-pathway non-toxic oligomerization represent a promising alternative strategy for neuroprotection in AD. MRZ-99030 was recently identified as a dipeptide that modulates Aβ1-42 aggregation by triggering a non-amyloidogenic aggregation pathway, thereby reducing the amount of intermediate toxic soluble oligomeric Aβ species. The present study evaluated the relevance of these promising results with MRZ-99030 under pathophysiological conditions i.e. against the synaptotoxic effects of Aβ oligomers on hippocampal long term potentiation (LTP) and two different memory tasks. Aβ1-42 interferes with the glutamatergic system and with neuronal Ca2+ signalling and abolishes the induction of LTP. Here we demonstrate that MRZ-99030 (100–500 nM) at a 10:1 stoichiometric excess to Aβ clearly reversed the synaptotoxic effects of Aβ1-42 oligomers on CA1-LTP in murine hippocampal slices. Co-application of MRZ-99030 also prevented the two-fold increase in resting Ca2+ levels in pyramidal neuron dendrites and spines triggered by Aβ1-42 oligomers. In anaesthetized rats, pre-administration of MRZ-99030 (50 mg/kg s.c.) protected against deficits in hippocampal LTP following i.c.v. injection of oligomeric Aβ1-42. Furthermore, similar treatment significantly ameliorated cognitive deficits in an object recognition task and under an alternating lever cyclic ratio schedule after the i.c.v. application of Aβ1-42 and 7PA2 conditioned medium, respectively. Altogether, these results demonstrate the potential therapeutic benefit of MRZ-99030 in AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease.

METHODS: We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively.

RESULTS: Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples.

CONCLUSIONS: These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frog skin host-defense peptide tigerinin-1R stimulates insulin release in vitro and improves glucose tolerance and insulin sensitivity in animal models of type 2 diabetes. This study extends these observation by investigating the molecular mechanisms of action underlying the beneficial metabolic effects of the analogue [Arg4]tigerinin-1R in mice with diet induced obesity, glucose intolerance and insulin resistance. The study also investigates the electrophysiological effects of the peptide on KATP and L-type Ca2+ channels in BRINBD11 clonal β cells. Non-fasting plasma glucose and glucagon concentrations were significantly (P<0.05) decreased and plasma insulin increased by twice daily treatment with [Arg4]tigerinin-1R (75 nmol.kg-1 body weight) for 28 days. Oral and intraperitoneal glucose tolerance were significantly (P < 0.05) improved accompanied by enhanced secretion and action of insulin. The peptide blocked KATP channels and, consistent with this, improved beta cell responses of isolated islets to a range of secretagogues. Peptide administration resulted in up-regulation of key functional genes in islets involved insulin secretion (Abcc8, Kcnj11, Cacna1c and Slc2a2) and in skeletal muscle involved with insulin action (Insr, Irs1, Pdk1, Pik3ca, and Slc2a4). These observations encourage further development of tigerinin-1R analogues for the treatment of patients with type 2 diabetes.