224 resultados para NEURAL CODE
Resumo:
In the present study, we examined the possible utility of a three-dimensional culture system using a thermo-reversible gelation polymer to isolate and expand neural stem cells (NSCs). The polymer is a synthetic biologically inert polymer and gelates at temperatures higher than the gel-sol transition point ( approximately 20 degrees C). When fetal mouse brain cells were inoculated into the gel, spherical colonies were formed ( approximately 1% in primary culture and approximately 9% in passage cultures). The spheroid-forming cells were positive for expression of the NSC markers nestin and Musashi. Under conditions facilitating spontaneous neural differentiation, the spheroid-forming cells expressed genes characteristic to astrocytes, oligodendrocytes, and neurons. The cells could be successively propagated at least to 80 poly-D-lysines over a period of 20 weeks in the gel culture with a growth rate higher than that observed in suspension culture. The spheroids formed by fetal mouse brain cells in the gel were shown to be of clonal origin. These results indicate that the spheroid culture system is a convenient and powerful tool for isolation and clonal expansion of NSCs in vitro.
Resumo:
Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the 'cross activation' variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, 'bilateral access' models entail that motor engrams formed during unilateral practise, may subsequently be utilised bilaterally - that is, by the neural circuitry that constitutes the control centres for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesise and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context. © 2013 Ruddy and Carson.
Resumo:
Bayesian probabilistic analysis offers a new approach to characterize semantic representations by inferring the most likely feature structure directly from the patterns of brain activity. In this study, infinite latent feature models [1] are used to recover the semantic features that give rise to the brain activation vectors when people think about properties associated with 60 concrete concepts. The semantic features recovered by ILFM are consistent with the human ratings of the shelter, manipulation, and eating factors that were recovered by a previous factor analysis. Furthermore, different areas of the brain encode different perceptual and conceptual features. This neurally-inspired semantic representation is consistent with some existing conjectures regarding the role of different brain areas in processing different semantic and perceptual properties. © 2012 Springer-Verlag.
Resumo:
Oxytocin (OT) influences how humans process information about others. Whether OT affects the processing of information about oneself remains unknown. Using a double-blind, placebo-controlled within-subject design, we recorded event-related potentials (ERPs) from adults during trait judgments about oneself and a celebrity and during judgments on word valence, after intranasal OT or placebo administration. We found that OT vs. placebo treatment reduced the differential amplitudes of a fronto-central positivity at 220-280 ms (P2) during self- vs. valence-judgments. OT vs. placebo treatment tended to reduce the differential amplitude of a late positive potential at 520-1000 ms (LPP) during self-judgments but to increase the differential LPP amplitude during other-judgments. OT effects on the differential P2 and LPP amplitudes to self- vs. celebrity-judgments were positively correlated with a measure of interdependence of self-construals. Thus OT modulates the neural correlates of self-referential processing and this effect varies as a function of interdependence.
Resumo:
We report a first study of brain activity linked to task switching in individuals with Prader-Willi syndrome (PWS) PWS individuals show a specific cognitive deficit in task switching which may be associated with the display of temper outbursts and repetitive questioning The performance of participants with PWS and typically developing controls was matched in a cued task switching procedure and brain activity was contrasted on switching and non switching blocks using SARI Individuals with PWS did not show the typical frontal-parietal pattern of neural activity associated with switching blocks, with significantly reduced activation in regions of the posterior parietal and ventromedial prefrontal cortices We suggest that this is linked to a difficulty in PWS in setting appropriate attentional weights to enable task set reconfiguration In addition to this, PWS individuals did not show the typical pattern of deactivation, with significantly less deactivation in an anterior region of the ventromedial prefrontal cortex One plausible explanation for this is that individuals with PWS show dysfunction within the default mode network which has been linked to attentional control The data point to functional changes in the neural circuitry supporting task switching in PWS even when behavioural performance is matched to controls and thus highlight neural mechanisms that may be involved in a specific pathway between genes cognition and behaviour (C) 2010 Elsevier B V All rights reserved
Resumo:
Background: Emotional responding is sensitive to social context; however, little emphasis has been placed on the mechanisms by which social context effects changes in emotional responding.
Objective: We aimed to investigate the effects of social context on neural responses to emotional stimuli to inform on the mechanisms underpinning context-linked changes in emotional responding.
Design: We measured event-related potential (ERP) components known to index specific emotion processes and self-reports of explicit emotion regulation strategies and emotional arousal. Female Chinese university students observed positive, negative, and neutral photographs, whilst alone or accompanied by a culturally similar (Chinese) or dissimilar researcher (British).
Results: There was a reduction in the positive versus neutral differential N1 amplitude (indexing attentional capture by positive stimuli) in the dissimilar relative to alone context. In this context, there was also a corresponding increase in amplitude of a frontal late positive potential (LPP) component (indexing engagement of cognitive control resources). In the similar relative to alone context, these effects on differential N1 and frontal LPP amplitudes were less pronounced, but there was an additional decrease in the amplitude of a parietal LPP component (indexing motivational relevance) in response to positive stimuli. In response to negative stimuli, the differential N1 component was increased in the similar relative to dissimilar and alone (trend) context.
Conclusion: These data suggest that neural processes engaged in response to emotional stimuli are modulated by social context. Possible mechanisms for the social-context-linked changes in attentional capture by emotional stimuli include a context-directed modulation of the focus of attention, or an altered interpretation of the emotional stimuli based on additional information proportioned by the context.
Resumo:
Purpose: The purpose of this paper is to present an artificial neural network (ANN) model that predicts earthmoving trucks condition level using simple predictors; the model’s performance is compared to the respective predictive accuracy of the statistical method of discriminant analysis (DA).
Design/methodology/approach: An ANN-based predictive model is developed. The condition level predictors selected are the capacity, age, kilometers travelled and maintenance level. The relevant data set was provided by two Greek construction companies and includes the characteristics of 126 earthmoving trucks.
Findings: Data processing identifies a particularly strong connection of kilometers travelled and maintenance level with the earthmoving trucks condition level. Moreover, the validation process reveals that the predictive efficiency of the proposed ANN model is very high. Similar findings emerge from the application of DA to the same data set using the same predictors.
Originality/value: Earthmoving trucks’ sound condition level prediction reduces downtime and its adverse impact on earthmoving duration and cost, while also enhancing the maintenance and replacement policies effectiveness. This research proves that a sound condition level prediction for earthmoving trucks is achievable through the utilization of easy to collect data and provides a comparative evaluation of the results of two widely applied predictive methods.
Resumo:
We present TARDIS-an open-source code for rapid spectral modelling of supernovae (SNe). Our goal is to develop a tool that is sufficiently fast to allow exploration of the complex parameter spaces of models for SN ejecta. This can be used to analyse the growing number of highquality SN spectra being obtained by transient surveys. The code uses Monte Carlo methods to obtain a self-consistent description of the plasma state and to compute a synthetic spectrum. It has a modular design to facilitate the implementation of a range of physical approximations that can be compared to assess both accuracy and computational expediency. This will allow users to choose a level of sophistication appropriate for their application. Here, we describe the operation of the code and make comparisons with alternative radiative transfer codes of differing levels of complexity (SYN++, PYTHON and ARTIS). We then explore the consequence of adopting simple prescriptions for the calculation of atomic excitation, focusing on four species of relevance to Type Ia SN spectra-Si II, SII, MgII and Ca II. We also investigate the influence of three methods for treating line interactions on our synthetic spectra and the need for accurate radiative rate estimates in our scheme.