174 resultados para Miyazawa-Jernigan matrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade an Auburn-Rollins-Strathclyde consortium has developed several suites of parallel R-matrix codes [1, 2, 3] that can meet the fundamental data needs required for the interpretation of astrophysical observation and/or plasma experiments. Traditionally our collisional work on light fusion-related atoms has been focused towards spectroscopy and impurity transport for magnetically confined fusion devices. Our approach has been to provide a comprehensive data set for the excitation/ionization for every ion stage of a particular element. As we progress towards a burning fusion plasma, there is a demand for the collisional processes involving tungsten, which has required a revitalization of the relativistic R-matrix approach. The implementation of these codes on massively parallel supercomputers has facilitated the progression to models involving thousands of levels in the close-coupling expansion required by the open d and f sub-shell systems of mid Z tungsten. This work also complements the electron-impact excitation of Fe-Peak elements required by astrophysics, in particular the near neutral species, which offer similar atomic structure challenges. Although electron-impact excitation work is our primary focus in terms of fusion application, the single photon photoionisation codes are also being developed in tandem, and benefit greatly from this ongoing work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed an R-matrix with pseudo-states (RMPS) calculation of electron-impact excitation in C2+.Collision strengths and effective collision strengths were determined for excitation between the lowest 24 terms, including all those arising from the 2s3l and 2s4l configurations. In the RMPS calculation, 238 terms (90 spectroscopic and 148 pseudo-state) were employed in the close-coupling (CC) expansion of the target. In order to investigate the significance of coupling to the target continuum and highly excited bound states, we compare the RMPS results with those from an R-matrix calculation that incorporated all 238 terms in the configuration- interaction expansion, but only the lowest 44 spectroscopic terms in the CC expansion. We also compare our effective collision strengths with those from an earlier 12-state R-matrix calculation (Berrington et al 1989 J. Phys. B: At.Mol. Opt. Phys. 22 665). The RMPS calculation was extremely large, involving (N +1)-electron Hamiltonian matrices of dimension up to 36 085, and required the use of our recently completed suite of parallel R-matrix programs. The full set of effective collision strengths fromourRMPS calculation is available at theOakRidgeNationalLaboratoryControlledFusion Atomic Data Center web site. 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio cross section calculations for vibronic excitation using the R -matrix approach have been performed on the N 2 + molecular ion complex. A three-state close-coupling expansion is used where the electronic target states; X 2 g + , A 2 u and B 2 u + of the molecular cation are represented by a valence configuration-interaction approximation. A non-adiabatic approximation is invoked to study vibronic excitation for the first three negative bands, (0,0), (1,0) and (2,0) of the X-B transition (B 2 u + v ´ X 2 g + v ´´ ) of N 2 + . Fixed-nuclei and non-adiabatic cross section results are compared with the available experimental data for the (0,0) band and the breakdown of the adiabatic fixed-nuclei approximation is clearly evident for the vibronic excitation of the (1,0) and (2,0) bands in this molecular ion complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron-impact ionization cross sections for argon are calculated using both non-perturbative R-matrix with pseudo-states (RMPS) and perturbative distorted-wave methods. At twice the ionization potential, the 3p(61)S ground-term cross section from a distorted-wave calculation is found to be a factor of 4 above crossed-beams experimental measurements, while with the inclusion of term-dependent continuum effects in the distorted-wave method, the perturbative cross section still remains almost a factor of 2 above experiment. In the case of ionization from the metastable 3p(5)4s(3)P term, the distorted-wave ionization cross section is also higher than the experimental cross section. On the other hand, the ground-term cross section determined from a nonperturbative RMPS calculation that includes 27 LS spectroscopic terms and another 282 LS pseudo-state terms to represent the high Rydberg states, and the target continuum is found to be in excellent agreement with experimental measurements, while the RMPS result is below the experimental cross section for ionization from the metastable term. We conclude that both continuum term dependence and interchannel coupling effects, which are included in the RMPS method, are important for ionization from the ground term, and interchannel coupling is also significant for ionization from the metastable term

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron-impact excitation collision strengths for transitions between all singly excited levels up to the n = 4 shell of helium-Eke argon and the n = 4 and 5 shells of helium-like iron have been calculated using a radiation-damped R-matrix approach. The theoretical collision strengths have been examined and associated with their infinite-energy limit values to allow the preparation of Maxwell-averaged effective collision strengths. These are conservatively considered to be accurate to within 20% at all temperatures, 3 x 10(5)-3 x 10(8) K forAr(16+) and 10(6)-10(9) K for Fe24+. They have been compared with the results of previous studies, where possible, and we find a broad accord. The corresponding rate coefficients are required for use in the calculation of derived, collisional-radiative, effective emission coefficients for helium-like lines for diagnostic application to fusion and astrophysical plasmas. The uncertainties in the fundamental collision data have been used to provide a critical assessment of the expected resultant uncertainties in such derived data, including redistributive and cascade collisional-radiative effects. The consequential uncertainties in the parts of the effective emission coefficients driven by excitation from the ground levels for the key w, x, y and z lines vary between 5% and 10%. Our results remove an uncertainty in the reaction rates of a key class of atomic processes governing the spectral emission of helium-like ions in plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoionization cross-sections are obtained using the relativistic DiracAtomic R-matrix Codes (DARC) for all valence and L-shell energy ranges between 27 and 270 eV. A total of 557 levels arising from the dominant configurations 3s23p4, 3s3p5, 3p6, 3s23p3[3d, 4s, 4p], 3p53d, 3s23p23d2, 3s3p43d, 3s3p33d2 and 2s22p53s23p5 have been included in the targetwavefunction representation of the Ar III ion, including up to 4p in the orbital basis. We also performed a smaller Breit-Pauli (BP) calculation containing the lowest 124 levels. Direct comparisons are made with previous theoretical and experimental work for both valence shell and L-shell photoionization. Excellent agreement was found for transitions involving the 2Po initial state to all allowed final states for both calculations across a range of photon energies. A number of resonant states have been identified to help analyse and explain the nature of the spectra at photon energies between 250 and 270 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present the photoionization cross sections for the ground and metastable states of Cl-like Argon by exploiting the fully relativistic Breit-Pauli R-matrix computer codes to determine these transitions of interest. We compare our work with previous theoretical and experimental results and present a detailed investigation into the model of Ar III, the resonant structure and identification process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison of collision strengths and effective collision strengths has been undertaken for the Cr II ion based on the model of Wasson et al [2010 A & A. 524 A35]. Calculations have been completed using the Breit-Pauli, RMATRX II and DARC suites of codes.