211 resultados para Methyl aspartate receptors
Resumo:
This paper reports the synthesis of dendrons containing a spermine unit at their focal point. The dendritic branching is based on L-lysine building blocks, and has terminal oligo(ethyleneglycol) units on the surface. As a consequence of the solubilising surface groups, these dendrons have high solubility in solvents with widely different polarities (e.g., dichloromethane and water). The protonated spermine unit at the focal point is an effective anion binding fragment and, as such, these dendrons are able to bind to polyanions. This paper demonstrates that polyanions can be bound in both dichloromethane (using a dye solubilisation assay) and in water (competitive ATP binding assay). In organic media the dendritic branching appears to have a pro-active effect on the solubilisation of the dye, with more dye being solubilised by higher generations of dendron. On the other hand, in water the degree of branching has no impact on the anion binding process. We propose that in this case, the spermine unit is effectively solvated by the bulk solvent and the dendritic branching does not need to play an active role in assisting solubility. Dendritic effects on anion binding have therefore been elucidated in different solvents. The dendritic branching plays a pro-active role in providing the anion binding unit with good solubility in apolar solvent media.
Resumo:
The role of proteases in viral infection of the lung is poorly understood. Thus, we examined matrix metalloproteinases (MMPs) and cathepsin proteases in respiratory syncytial virus (RSV)-infected mouse lungs. RSV-induced gene expression for MMPs -2, -3, -7, -8, -9, -10, -12, -13, -14, -16, -17, -19, -20, -25, -27, and -28 and cathepsins B, C, E, G, H, K, L1, S, W, and Z in the airways of Friend leukemia virus B sensitive strain mice. Increased proteases were present in the bronchoalveolar lavage fluid (BALF) and lung tissue during infection. Mitochondrial antiviral-signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β-deficient mice were exposed to RSV. Mavs-deficient mice had significantly lower expression of airway MMP-2, -3, -7, -8, -9, -10, -12, -13, and -28 and cathepsins C, G, K, S, W, and Z. In lung epithelial cells, retinoic acid-inducible gene-1 (RIG-I) was identified as the major RIG-I-like receptor required for RSV-induced protease expression via MAVS. Overexpression of RIG-I or treatment with interferon-β in these cells induced MMP and cathepsin gene and protein expression. The significance of RIG-1 protease induction was demonstrated by the fact that inhibiting proteases with batimastat, E64 or ribavirin prevented airway hyperresponsiveness and enhanced viral clearance in RSV-infected mice.
Resumo:
Purpose: Systemic exposure to parabens in the neonatal population, in particular propyl-parabens (PPB), remains a concern. Blood concentrations and kinetics of methyl-parabens (MPB) and PPB were therefore determined in neonates receiving medicines containing these excipients.
Methods: A multi-centre, non-interventional, observational study of excipient-kinetics in neonates. ‘Dried Blood Spot’ samples were collected opportunistically at the same time as routine samples and the observations modelled using a non-linear mixed effects approach.
Results: A total of 841 blood MPB and PPB concentration data were available for evaluation from 181 pre- and term-neonates. Quantifiable blood concentrations of MPB and PPB were observed in 99% and 49% of patients, and 55% and 25% of all concentrations were above limit of detection (10 ng/ml), respectively. Only MPB data was amenable to modelling. Oral bioavailability was influenced by type of formulation and disposition was best described by a two compartment model with clearance (CL) influenced by post natal age (PNA); CLPNA<21 days 0.57 versus CLPNA>21days 0.88 L/h.
Conclusions: Daily repeated administration of parabens containing medicines can result in prolonged systemic exposure to the parent compound in neonates. Animal toxicology studies of PPB that specifically address the neonatal period are required before a permitted daily exposure for this age group can be established.
Resumo:
Thermosensitive hydrogels are of a great interest due to their many biomedical and pharmaceutical applications. In this study, we synthesized a new series of random poly (methyl vinyl ether-co-maleic anhydride) (Gantrez (R) AN, GZ) and Pluronic (R) F127 (PF127) copolymers (GZ-PF127), that formed thermosensitive hydrogels whose gelation temperature and mechanical properties could be controlled by the molar ratio of GZ and PF127 polymers and the copolymer concentration in water. Gelation temperatures tended to decrease when the GZm/PF127 ratio increased. Thus, at a fixed GZm/PF127 value, sol-gel temperatures decreased at higher copolymer concentrations. Moreover, these hydrogels controlled the release of proteins such as bovine serum albumin (BSA) and recombinant recombinant kinetoplastid membrane protein of Leishmania (rKMP-11) more than the PF127 system. Toxicity studies carried out in J774.2 macrophages showed that cell viability was higher than 80%. Finally, histopathological analysis revealed that subcutaneous administration of low volumes of these hydrogels elicited a tolerable inflammatory response that could be useful to induce immune responses against the protein cargo in the development of vaccine adjuvants.
Resumo:
Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.
Resumo:
The nature of photon interaction and reaction pH can have significant impacts on semiconductor photocatalysis. This paper describes the effect of pH on the photonic efficiency of photocatalytic reactions in the aqueous phase using TiO2 catalysts. The reactor was irradiated using periodic illumination with UV-LEDs through control of the illumination duty cycle (γ) through a series of light and dark times (Ton/Toff). Photonic efficiencies for methyl orange degradation were found to be comparable at high γ irrespective of pH. At lower γ, pH effects on photonic efficiency were very distinct across acidic, neutral and alkaline pH indicating an effect of complementary parameters. The results suggest photonic efficiency is greatest as illumination time, Ton approaches interfacial electron-transfer characteristic time which is within the range of this study or charge-carrier lifetimes upon extrapolation and also when electrostatic attraction between surface-trapped holes, {TiIVOH}ads+ and substrate molecules is strongest.
Resumo:
The use of controlled periodic illumination with UV LEDs for enhancing photonic efficiency of photocatalytic decomposition processes in water has been investigated using methyl orange as a model compound. The impact of the length of light and dark time periods (T ON/T OFF times) on photodegradation and photonic efficiency using a UV LED-illuminated photoreactor has been studied. The results have shown an inverse dependency of the photonic efficiency on duty cycle and a very little effect on T ON or T OFF time periods, indicating no effect of rate-limiting steps through mass diffusion or adsorption/desorption in the reaction. For this reactor, the photonic efficiency under controlled periodic illumination (CPI) matches to that of continuous illumination, for the same average UV light intensities. Furthermore, under CPI conditions, the photonic efficiency is inversely related to the average UV light intensity in the reactor, in the millisecond time regime. This is the first study that has investigated the effect of controlled periodic illumination using ultra band gap UV LED light sources in the photocatalytic destruction of dye compounds using titanium dioxide. The results not only enhance the understanding of the effect of periodic illumination on photocatalytic processes but also provide a greater insight to the potential of these light sources in photocatalytic reactions.
Resumo:
Quantum yields of the photocatalytic degradation of methyl orange under controlled periodic illumination (CPI) have been modelled using existing models. A modified Langmuir-Hinshelwood (L-H) rate equation was used to predict the degradation reaction rates of methyl orange at various duty cycles and a simple photocatalytic model was applied in modelling quantum yield enhancement of the photocatalytic process due to the CPI effect. A good agreement between the modelled and experimental data was observed for quantum yield modelling. The modified L-H model, however, did not accurately predict the photocatalytic decomposition of the dye under periodic illumination.
Resumo:
Ligated Pd(II) complexes have been studied for the catalytic oxidation of terminal olefins to their corresponding methyl ketones. The method uses aqueous hydrogen peroxide as the terminal oxidant; a sustainable and readily accessible oxidant. The choice of ligand, counterion and solvent all have a significant effect on catalytic performance and we were able to develop systems which perform well for these challenging oxidations.
Resumo:
Methyl 4-acetyl-5-(2-nitrophenyl)pyrrolidine-2-carboxylate 5, readily available in one step by a 1,3-dipolar cycloaddition, undergoes reduction, cyclisation and fragmentation to the corresponding quinoline when treated with hydrogen and palladium.