172 resultados para Harness family.
Resumo:
SNAP25 occurs on chromosome 20p12.2, which has been linked to schizophrenia in some samples, and recently linked to latent classes of psychotic illness in our sample. SNAP25 is crucial to synaptic functioning, may be involved in axonal growth and dendritic sprouting, and its expression may be decreased in schizophrenia. We genotyped 18 haplotype-tagging SNPs in SNAP25 in a sample of 270 Irish high-density families. Single marker and haplotype analyses were performed in FBAT and PDT. We adjusted for multiple testing by computing q values. Association was followed up in an independent sample of 657 cases and 411 controls. We tested for allelic effects on the clinical phenotype by using the method of sequential addition and 5 factor-derived scores of the OPCRIT. Nine of 18 SNPs had Pvalues
Resumo:
FBXL21 gene encodes an F-box containing protein functioning in the SCIP ubiquitin ligase complex. The role of the F-box protein is to recruit proteins designated for degradation to the ligase complex so they would be ubiquitinated. Using both family and case-control samples, we found consistent associations in and around FBXL21 gene. In the family sample (Irish study of high density schizophrenia families, ISHDSF, 1,350 subjects from 273 families), a minimal PDT P-value of 0.0011 was observed at rs31555. In the case-control sample (Irish case-control study of schizophrenia, ICCSS, 814 cases and 625 controls), significant associations were observed at two markers (rs1859427 P=0.0197, and rs6861170 P=0.0197). In haplotype analyses, haplotype 1-1 (C-T) of rs1859427-rs6861170 was overtransmitted in the ISHDSF (P=0.0437) and was over-represented in the ICCSS (P=0.0177). For both samples, the associated alleles and haplotypes were identical. These data suggested that FBXL21 maybe associated with schizophrenia in the Irish samples. (C) 2008 Wiley-Liss, Inc.
Resumo:
We present an updated cumulative size distribution (CSD) for Jupiter Family comet (JFC) nuclei, including a rigorous assessment of the uncertainty on the slope of the CSD. The CSD is expressed as a power law, N(>rN) ?r-qN, where rN is the radius of the nuclei and q is the slope. We include a large number of optical observations published by us and others since the comprehensive review in the Comets II book, and make use of an improved fitting method. We assess the uncertainty on the CSD due to all of the unknowns and uncertainties involved (photometric uncertainty, assumed phase function, albedo and shape of the nucleus) by means of Monte Carlo simulations. In order to do this we also briefly review the current measurements of these parameters for JFCs. Our final CSD has a slope q= 1.92 ± 0.20 for nuclei with radius rN= 1.25 km.