172 resultados para HETEROGENEOUS CATALYSIS
Resumo:
Combining whole cell biocatalysis and chemocatalysis in a single reaction sequence avoids unnecessary separations, and the associated waste and energy consumption. Bacterial fermentation has been employed to convert waste glycerol from biodiesel production into 1,3-propanediol. This 1,3-propanediol can be extracted selectively from the aqueous fermentation broth using ionic liquids. 1,3-propanediol in ionic liquid solution was converted to propanal by hydrogen transfer initiated dehydration (HTID) catalysed by a Cp*IrCl2(NHC) (Cp* = pentamethylcyclopentadienyl; NHC = carbene ligand) complex. The use of an ionic liquid solvent enabled the reaction to be performed under reduced pressure, facilitating the isolation of the product, and improving the reaction selectivity. The Ir(III) catalyst in ionic liquid was found to be highly recyclable.
Resumo:
The combination of bio- and chemo-catalysis to form a single synthetic route is a powerful methodology for the improvement of chemical synthesis. The extreme methods of biocatalysis (whole cell and isolated enzyme) fulfill very different roles. Biocatalysis by isolated enzymes enables highly efficient chemical transformations of extremely high selectivity and low contamination; however, conditions and substrates are limited to a narrow range. Whole cell biocatalysis enables the conversion of crude substrates, such as those derived from biomass; however, the products tend to be impure and delivered in dilute aqueous solution. Chemocatalysis is a well-established technique, and the addition of chemical catalysis and chemocatalytic methods to biocatalysis enables synthetic chemists to avoid the shortcomings of a biocatalytic step. For example, in enzymatic catalysis the addition of a chemical catalyst can allow the conversion of a racemic alcohol to an enantiopure, instead of racemic, product. In whole cell biocatalysis chemical reagents can assist the separation, transformation, and further isolation of the functionality of interest. The cooperation of bio- and chemocatalysts enables sustainable production of chemicals that would be impossible using biocatalysis alone, while achieving selectivities and using substrates not currently possible with chemocatalysis alone.
Resumo:
Wearable devices performing advanced bio-signal analysis algorithms are aimed to foster a revolution in healthcare provision of chronic cardiac diseases. In this context, energy efficiency is of paramount importance, as long-term monitoring must be ensured while relying on a tiny power source. Operating at a scaled supply voltage, just above the threshold voltage, effectively helps in saving substantial energy, but it makes circuits, and especially memories, more prone to errors, threatening the correct execution of algorithms. The use of error detection and correction codes may help to protect the entire memory content, however it incurs in large area and energy overheads which may not be compatible with the tight energy budgets of wearable systems. To cope with this challenge, in this paper we propose to limit the overhead of traditional schemes by selectively detecting and correcting errors only in data highly impacting the end-to-end quality of service of ultra-low power wearable electrocardiogram (ECG) devices. This partition adopts the protection of either significant words or significant bits of each data element, according to the application characteristics (statistical properties of the data in the application buffers), and its impact in determining the output. The proposed heterogeneous error protection scheme in real ECG signals allows substantial energy savings (11% in wearable devices) compared to state-of-the-art approaches, like ECC, in which the whole memory is protected against errors. At the same time, it also results in negligible output quality degradation in the evaluated power spectrum analysis application of ECG signals.
Resumo:
Emerging web applications like cloud computing, Big Data and social networks have created the need for powerful centres hosting hundreds of thousands of servers. Currently, the data centres are based on general purpose processors that provide high flexibility buts lack the energy efficiency of customized accelerators. VINEYARD aims to develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by employing typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). This programming framework will, further, allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer high flexibility and energy efficiency. VINEYARD will foster the expansion of the soft-IP core industry, currently limited in the embedded systems, to the data-centre market. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases (a) a bio-informatics application for high-accuracy brain modeling, (b) two critical financial applications, and (c) a big-data analysis application.
Resumo:
Exascale computation is the next target of high performance computing. In the push to create exascale computing platforms, simply increasing the number of hardware devices is not an acceptable option given the limitations of power consumption, heat dissipation, and programming models which are designed for current hardware platforms. Instead, new hardware technologies, coupled with improved programming abstractions and more autonomous runtime systems, are required to achieve this goal. This position paper presents the design of a new runtime for a new heterogeneous hardware platform being developed to explore energy efficient, high performance computing. By combining a number of different technologies, this framework will both simplify the programming of current and future HPC applications, as well as automating the scheduling of data and computation across this new hardware platform. In particular, this work explores the use of FPGAs to achieve both the power and performance goals of exascale, as well as utilising the runtime to automatically effect dynamic configuration and reconfiguration of these platforms.
Resumo:
Power capping is a fundamental method for reducing the energy consumption of a wide range of modern computing environments, ranging from mobile embedded systems to datacentres. Unfortunately, maximising performance and system efficiency under static power caps remains challenging, while maximising performance under dynamic power caps has been largely unexplored. We present an adaptive power capping method that reduces the power consumption and maximizes the performance of heterogeneous SoCs for mobile and server platforms. Our technique combines power capping with coordinated DVFS, data partitioning and core allocations on a heterogeneous SoC with ARM processors and FPGA resources. We design our framework as a run-time system based on OpenMP and OpenCL to utilise the heterogeneous resources. We evaluate it through five data-parallel benchmarks on the Xilinx SoC which allows fully voltage and frequency control. Our experiments show a significant performance boost of 30% under dynamic power caps with concurrent execution on ARM and FPGA, compared to a naive separate approach.