191 resultados para Functional jaw orthopedics
Resumo:
WbaP is a membrane enzyme that initiates O antigen synthesis in Salmonella enterica by catalysing the transfer of galactose 1-phosphate (Gal-1-P) onto undecaprenyl phosphate (Und-P). WbaP possesses at least three predicted structural domains: an N-terminal region containing four transmembrane helices, a large central periplasmic loop, and a C-terminal domain containing the last transmembrane helix and a large cytoplasmic tail. In this work, we investigated the contribution of each region to WbaP function by constructing a series of mutant WbaP proteins and using them to complement O antigen synthesis in DeltawbaP mutants of S. enterica serovars Typhi and Typhimurium. Truncated forms of WbaP lacking the periplasmic loop exhibited altered chain-length distributions in O antigen polymerization, suggesting that this central domain is involved in modulating the chain-length distribution of the O polysaccharide. The N-terminal and periplasmic domains were dispensable for complementation of O antigen synthesis in vivo, suggesting that the C-terminal domain carries the sugar-phosphate transferase activity. However, despite the fact that they complemented the synthesis of O antigen in the DeltawbaP mutant in vivo, membrane extracts containing WbaP derivatives without the N-terminal domain failed to transfer radioactive Gal from UDP-Gal into a lipid-rich fraction. These results suggest that the N-terminal region of WbaP, which contains four transmembrane domains, is essential for the insertion or stability of the protein in the bacterial membrane. We propose that the domain structure of WbaP enables this protein not only to function in the transfer of Gal-1-P to Und-P but also to establish critical interactions with additional proteins required for the correct assembly of O antigen in S. enterica.
Resumo:
Wzz is a membrane protein that determines the chain length distribution of the O-antigen lipopolysaccharide by an unknown mechanism. Wzz proteins consist of two transmembrane helices separated by a large periplasmic loop. The periplasmic loop of Escherichia coli K-12 Wzz (244 amino acids from K65 to A308) was purified and found to be a monomer with an extended conformation, as determined by gel filtration chromatography and analytical ultracentrifugation. Circular dichroism showed that the loop has a 60% helical content. The Wzz periplasmic loop also contains three regions with predicted coiled coils. To probe the function of the predicted coiled coils, we constructed amino acid replacement mutants of the E. coli K-12 Wzz protein, which were designed so that the coiled coils could be separate without compromising the helicity of the individual molecules. Mutations in one of the regions, spanning amino acids 108 to 130 (region I), were associated with a partial defect in O-antigen chain length distribution, while mutants with mutations in the region spanning amino acids 209 to 223 (region III) did not have an apparent functional defect. In contrast, mutations in the region spanning amino acids 153 to 173 (region II) eliminated the Wzz function. This phenotype was associated with protein instability, most likely due to conformational changes caused by the amino acid replacements, which was confirmed by limited trypsin proteolysis. Additional mutagenesis based on a three-dimensional model of region I demonstrated that the amino acids implicated in function are all located at the same face of a predicted alpha-helix, suggesting that a coiled coil actually does not exist in this region. Together, our results suggest that the regions predicted to be coiled coils are important for Wzz function because they maintain the native conformation of the protein, although the existence of coiled coils could not be demonstrated experimentally.
Resumo:
The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium.
Resumo:
WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane.
Resumo:
The core oligosaccharide component of the lipopolysaccharide can be subdivided into inner and outer core regions. In Escherichia coli, the inner core consists of two 3-deoxy-d-manno-octulosonic acid and three glycero-manno-heptose residues. The HldE protein participates in the biosynthesis of ADP-glycero-manno-heptose precursors used in the assembly of the inner core. HldE comprises two functional domains: an N-terminal region with homology to the ribokinase superfamily (HldE1 domain) and a C-terminal region with homology to the cytidylyltransferase superfamily (HldE2 domain). We have employed the structure of the E. coli ribokinase as a template to model the HldE1 domain and predict critical amino acids required for enzyme activity. Mutation of these residues renders the protein inactive as determined in vivo by functional complementation analysis. However, these mutations did not affect the secondary or tertiary structure of purified HldE1, as judged by fluorescence spectroscopy and circular dichroism. Furthermore, in vivo coexpression of wild-type, chromosomally encoded HldE and mutant HldE1 proteins with amino acid substitutions in the predicted ATP binding site caused a dominant negative phenotype as revealed by increased bacterial sensitivity to novobiocin. Copurification experiments demonstrated that HldE and HldE1 form a complex in vivo. Gel filtration chromatography resulted in the detection of a dimer as the predominant form of the native HldE1 protein. Altogether, our data support the notions that the HldE functional unit is a dimer and that structural components present in each HldE1 monomer are required for enzymatic activity.
Resumo:
We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that variant glycan structures can be transferred onto protein indicating the relaxed specificity of the putative oligosaccharyltransferase PglB. Structural data derived from these variant glycans allowed us to infer the role of five individual glycosyltransferases in the biosynthesis of the N-linked heptasaccharide. Furthermore, we show that C. jejuni- and E. coli-derived pathways can interact in the biosynthesis of N-linked glycoproteins. In particular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate transferase involved in glycolipid biosynthesis, provides for an alternative N-linked heptasaccharide biosynthetic pathway bypassing the requirement for the C. jejuni-derived glycosyltransferase PglC. This is the first experimental evidence that biosynthesis of the N-linked glycan occurs on a lipid-linked precursor prior to transfer onto protein. These findings provide a framework for understanding the process of N-linked protein glycosylation in Bacteria and for devising strategies to exploit this system for glycoengineering.
Resumo:
To examine the relationship between short-wavelength-sensitive (SWS) resolution acuity and epidemiologically defined stages of early age-related maculopathy (ARM).
Resumo:
We report the identification of the promoter region of the Escherichia coli O7-specific lipopolysaccharide (LPS) gene cluster (wbEcO7). Typical -10 and -35 sequences were found to be located in the intervening region between galF and rlmB, the first gene of the wbEcO7 cluster. Data from RNase protection experiments revealed the existence of an untranslated leader mRNA segment of 173 bp, including the JUMPStart and two ops sequences. We characterized the structure of this leader mRNA by using the program Mfold and a combination of nested and internal deletions transcriptionally fused to a promoterless lac operon. Our results indicated that the leader mRNA may fold into a series of complex stem-loop structures, one of which includes the JUMPStart element. We have also found that one of the ops sequences resides on the predicted stem and the other resides on the loop region, and we confirmed that these sequences are essential for the RfaH-mediated regulation of the O polysaccharide cluster. A very similar stem-loop structure could be predicted in the promoter region of the LPS core operon encoding the waaQGPSBIJYZK genes. We observed another predicted stem-loop, located immediately downstream from the wbEcO7 transcription initiation site, which appeared to be involved in premature termination of transcription. This putative stem-loop is common to many other O polysaccharide gene clusters but is not present in core oligosaccharide genes. wbEcO7-lac transcriptional fusions in single copy numbers were also used to determine the effects of various environmental cues in the transcriptional regulation of O polysaccharide synthesis. No effects were detected with temperature, osmolarity, Mg2+ concentration, and drugs inducing changes in DNA supercoiling. We therefore conclude that the wbEcO7 promoter activity may be constitutive and that regulation takes place at the level of elongation of the mRNA in a RfaH-mediated manner.
Resumo:
The O-repeating unit of the Escherichia coli O7-specific lipopolysaccharide is made of galactose, mannose, rhamnose, 4-acetamido-4,6-dideoxyglucose, and N-acetyglucosamine. We have recently characterized the genes involved in the biosynthesis of the sugar precursor GDP-mannose occurring in the E. coli O7:K1 strain VW187 (C. L. Marolda and M. A. Valvano, J. Bacteriol. 175:148-158, 1993). In the present study, we identified and sequenced the rfbBDAC genes encoding the enzymes for the biosynthesis of another precursor, dTDP-rhamnose. These genes are localized on the upstream end of the rfbEcO7 region, and they are strongly conserved compared with similar genes found in various enteric and nonenteric bacteria. Upstream of rfbB we identified a DNA segment containing the rfb promoter and a highly conserved untranslated leader sequence also present in the promoter regions of other surface polysaccharide gene clusters. Also, we have determined that rfbB and rfbA have homologs, rffG (o355) and rffH (o292), respectively, located on the rff cluster, which is involved in the synthesis of enterobacterial common antigen. We provide biochemical evidence that rffG and rffH encode dTDP-glucose dehydratase and glucose-1-phosphate thymidylyltransferase activities, respectively, and we also show that rffG complemented the rfbB defect in the O7+ cosmid pJHCV32. We also demonstrate that rffG is distinct from rffE and map the rffE gene to the second gene of the rff cluster.
Resumo:
GPR40, free fatty acid receptor 1 (FFAR1), is a member of the GPCR superfamily and a possible target for the treatment of type 2 diabetes. In this work, we conducted a bidirectional iterative investigation, including computational modeling and site-directed mutagenesis, aimed at delineating amino acid residues forming the functional "chemoprint" of GPR40 for agonist recognition. The computational and experimental studies revolved around the recognition of the potent synthetic agonist GW9508. Our experimentally supported model suggested that H137(4.56), R183(5.39), N244(6.55), and R258(7.35) are directly involved in interactions with the ligand. We have proposed a polarized NH-pi interaction between H137(4.56) and GW9508 as one of the contributing forces leading to the high potency of GW9508. The modeling approach presented in this work provides a general strategy for the exploration of receptor-ligand interactions in G-protein coupled receptors beginning prior to acquisition of experimental data.
Resumo:
Biodiversity may be seen as a scientific measure of the complexity of a biological system, implying an information basis. Complexity cannot be directly valued, so economists have tried to define the services it provides, though often just valuing the services of 'key' species. Here we provide a new definition of biodiversity as a measure of functional information, arguing that complexity embodies meaningful information as Gregory Bateson defined it. We argue that functional information content (FIC) is the potentially valuable component of total (algorithmic) information content (AIC), as it alone determines biological fitness and supports ecosystem services. Inspired by recent extensions to the Noah's Ark problem, we show how FIC/AIC can be calculated to measure the degree of substitutability within an ecological community. Establishing substitutability is an essential foundation for valuation. From it, we derive a way to rank whole communities by Indirect Use Value, through quantifying the relation between system complexity and the production rate of ecosystem services. Understanding biodiversity as information evidently serves as a practical interface between economics and ecological science. © 2012 Elsevier B.V.
Resumo:
Alzheimer's disease (AD) and vascular dementia (VaD) are both associated with deficits in cholinergic neurotransmission that are amenable to therapeutic intervention. The cholinesterase inhibitor, donepezil, is clinically effective in both AD and VaD. Results from a 10-study metaanalysis of donepezil (5 or 10 mg/day) in AD and a two-study combined analysis of donepezil (5 or 10 mg/day) in VaD are presented to compare patient characteristics and donepezil treatment outcomes. The analyzed studies were randomized, placebo-controlled, and of up to 24 weeks duration. In both AD and VaD, donepezil provided significant benefits compared with placebo on measures of cognition and global function. Placebo-treated AD patients showed a decline in cognition and global function, whereas placebo-treated VaD patients remained stable, suggesting treatment effects of donepezil in VaD were driven by improvement rather than stabilization or reduced decline. More VaD patients than AD patients received concomitant medications. Cardiovascular adverse events were more common in VaD than AD patients but were not increased by donepezil. In conclusion, although there are differences between AD and VaD patients in comorbid conditions and concomitant medications, donepezil is effective and well tolerated in both types of dementia.
Resumo:
Nicastrin (NCSTN) is a component of the ?-secretase complex and therefore potentially a candidate risk gene for Alzheimer's disease. Here, we have developed a novel functional genomics methodology to express common locus haplotypes to assess functional differences. DNA recombination was used to engineer 5 bacterial artificial chromosomes (BACs) to each express a different haplotype of the NCSTN locus. Each NCSTN-BAC was delivered to knockout nicastrin (Ncstn(-/-)) cells and clonal NCSTN-BAC(+)/Ncstn(-/-) cell lines were created for functional analyses. We showed that all NCSTN-BAC haplotypes expressed nicastrin protein and rescued ?-secretase activity and amyloid beta (Aß) production in NCSTN-BAC(+)/Ncstn(-/-) lines. We then showed that genetic variation at the NCSTN locus affected alternative splicing in human postmortem brain tissue. However, there was no robust functional difference between clonal cell lines rescued by each of the 5 different haplotypes. Finally, there was no statistically significant association of NCSTN with disease risk in the 4 cohorts. We therefore conclude that it is unlikely that common variation at the NCSTN locus is a risk factor for Alzheimer's disease.
Resumo:
Objective: To evaluate the impact of a provider initiated primary care outreach intervention compared with usual care among older adults at risk of functional decline. Design: Randomised controlled trial. Setting: Patients enrolled with 35 family physicians in five primary care networks in Hamilton, Ontario, Canada. Participants Patients: were eligible if they were 75 years of age or older and were not receiving home care services. Of 3166 potentially eligible patients, 2662 (84%) completed the validated postal questionnaire used to determine risk of functional decline. Of 1724 patients who met the risk criteria, 769 (45%) agreed to participate and 719 were randomised. Intervention: The 12 month intervention, provided by experienced home care nurses in 2004-6, consisted of a comprehensive initial assessment using the resident assessment instrument for home care; collaborative care planning with patients, their families, and family physicians; health promotion; and referral to community health and social support services. Main outcome measures: Quality adjusted life years (QALYs), use and costs of health and social services, functional status, self rated health, and mortality. Results: The mean difference in QALYs between intervention and control patients during the study period was not statistically significant (0.017, 95% confidence interval -0.022 to 0.056; P=0.388). The mean difference in overall cost of prescription drugs and services between the intervention and control groups was not statistically significant, (-$C165 (£107; €118; $162), 95% confidence interval -$C16 545 to $C16 214; P=0.984). Changes over 12 months in functional status and self rated health were not significantly different between the intervention and control groups. Ten patients died in each group. Conclusions: The results of this study do not support adoption of this preventive primary care intervention for this target population of high risk older adults. Trial registration: Clinical trials NCT00134836.