217 resultados para Fire intensity
Resumo:
In this paper, a new approach for extracting stress intensity factors (SIFs) by the extended element-free Galerkin method, through a crack closure integral (CCI) scheme, is proposed. The CCI calculation is used in conjunction with a local smoothing technique to improve the accuracy of the computed SIFs in a number of case studies of linear elastic fracture mechanics. The cases involve problems of mixed-mode, curved crack and thermo-mechanical loading. The SIFs by CCI, displacement and stress methods are compared with those based on the M-integral technique reported in the literature. The proposed CCI method involves very simple relations, and still gives good accuracy. The convergence of the results is also examined.
Resumo:
This paper describes the computation of stress intensity factors (SIFs) for cracks in functionally graded materials (FGMs) using an extended element-free Galerkin (XEFG) method. The SIFs are extracted through the crack closure integral (CCI) with a local smoothing technique, non-equilibrium and incompatibility formulations of the interaction integral and the displacement method. The results for mode I and mixed mode case studies are presented and compared with those available in the literature. They are found to be in good agreement where the average absolute error for the CCI with local smoothing, despite its simplicity, yielded a high level of accuracy.
Resumo:
The dynamics of magnetic fields with an amplitude of several tens of megagauss, generated at both sides of a solid target irradiated with a high-intensity (~1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets. © 2012 American Physical Society.