355 resultados para FIBROSIS QUISTICA
Resumo:
To compare the antimicrobial susceptibility of Prevotella spp. isolated from cystic fibrosis (CF) and non-CF patients and analyse the impact of antibiotic prescribing in the preceding year on resistance amongst CF isolates.
Resumo:
The ECFS-CTN Standardisation Committee has undertaken this review of lung clearance index as part of the group's work on evaluation of clinical endpoints with regard to their use in multicentre clinical trials in CF. The aims were 1) to review the literature on reliability, validity and responsiveness of LCI in patients with CF, 2) to gain consensus of the group on feasibility of LCI and 3) to gain consensus on answers to key questions regarding the promotion of LCI to surrogate endpoint status. It was concluded that LCI has an attractive feasibility and clinimetric properties profile and is particularly indicated for multicentre trials in young children with CF and patients with early or mild CF lung disease. This is the first article to collate the literature in this manner and support the use of LCI in clinical trials in CF.
Resumo:
The pharmacological treatment of cystic fibrosis, together with implications for health economics, therapeutic monitoring and adherence, are discussed
Resumo:
Rationale:
Cathepsin S (CTSS) activity is increased in bronchoalveolar lavage (BAL) fluid from patients with cystic fibrosis (CF). This activity contributes to lung inflammation via degradation of antimicrobial proteins, such as lactoferrin and members of the β-defensin family.
Objectives:
In this study, we investigated the hypothesis that airway epithelial cells are a source of CTSS, and mechanisms underlying CTSS expression in the CF lung.
Methods:
Protease activity was determined using fluorogenic activity assays. Protein and mRNA expression were analyzed by ELISA, Western blotting, and reverse-transcriptase polymerase chain reaction.Measurements and Main Results: In contrast to neutrophil elastase, CTSS activity was detectable in 100% of CF BAL fluid samples from patients without Pseudomonas aeruginosa infection. In this study, we identified epithelial cells as a source of pulmonary CTSS activity with the demonstration that CF airway epithelial cells express and secrete significantly more CTSS than non-CF control cells in the absence of proinflammatory stimulation. Furthermore, levels of the transcription factor IRF-1 correlated with increased levels of its target gene CTSS. We discovered that miR-31, which is decreased in the CF airways, regulates IRF-1 in CF epithelial cells. Treating CF bronchial epithelial cells with a miR-31 mimic decreased IRF-1 protein levels with concomitant knockdown of CTSS expression and secretion.
Conclusions:
The miR-31/IRF-1/CTSS pathway may play a functional role in the pathogenesis of CF lung disease and may open up new avenues for exploration in the search for an effective therapeutic target.
Resumo:
Background
We describe Pseudomonas aeruginosa acquisitions in children with cystic fibrosis (CF) aged ≤5-years, eradication treatment efficacy, and genotypic relationships between upper and lower airway isolates and strains from non-CF sources.
Methods
Of 168 CF children aged ≤5-years in a bronchoalveolar lavage (BAL)-directed therapy trial, 155 had detailed microbiological results. Overall, 201/271 (74%) P. aeruginosa isolates from BAL and oropharyngeal cultures were available for genotyping, including those collected before and after eradication therapy.
Results
Eighty-two (53%) subjects acquired P. aeruginosa, of which most were unique strains. Initial eradication success rate was 90%, but 36 (44%) reacquired P. aeruginosa, with genotypic substitutions more common in BAL (12/14) than oropharyngeal (3/11) cultures. Moreover, oropharyngeal cultures did not predict BAL genotypes reliably.
Conclusions
CF children acquire environmental P. aeruginosa strains frequently. However, discordance between BAL and oropharyngeal strains raises questions over upper airway reservoirs and how to best determine eradication in non-expectorating children.
Resumo:
Summary: The aim of this study was to assess the prevalence of acquired carbapenemase genes amongst carbapenem non-susceptible Pseudomonas aeruginosa isolates in Australian patients with cystic fibrosis (CF). Cross-sectional molecular surveillance for acquired carbapenemase genes was performed on CF P. aeruginosa isolates from two isolate banks comprising: (i) 662 carbapenem resistant P. aeruginosa isolates from 227 patients attending 10 geographically diverse Australian CF centres (2007-2009), and (ii) 519 P. aeruginosa isolates from a cohort of 173 adult patients attending one Queensland CF clinic in 2011. All 1189 P. aeruginosa isolates were tested by polymerase chain reaction (PCR) protocols targeting ten common carbapenemase genes, as well the Class 1 integron intI1 gene and the aadB aminoglycoside resistance gene. No carbapenemase genes were identified among all isolates tested. The intI1 and aadB genes were frequently detected and were significantly associated with the AUST-02 strain (OR 24.6, 95% CI 9.3-65.6; p < 0.0001) predominantly from Queensland patients. Despite the high prevalence of carbapenem resistance in P. aeruginosa in Australian patients with CF, no acquired carbapenemase genes were detected in the study, suggesting chromosomal mutations remain the key resistance mechanism in CF isolates. Systematic surveillance for carbapenemase-producing P. aeruginosa in CF by molecular surveillance is ongoing.
Resumo:
BACKGROUND: Molecular typing is integral for identifying Pseudomonas aeruginosa strains that may be shared between patients with cystic fibrosis (CF). We conducted a side-by-side comparison of two P. aeruginosa genotyping methods utilising informative-single nucleotide polymorphism (SNP) methods; one targeting 10 P. aeruginosa SNPs and using real-time polymerase chain reaction technology (HRM10SNP) and the other targeting 20 SNPs and based on the Sequenom MassARRAY platform (iPLEX20SNP).
METHODS: An in-silico analysis of the 20 SNPs used for the iPLEX20SNP method was initially conducted using sequence type (ST) data on the P. aeruginosa PubMLST website. A total of 506 clinical isolates collected from patients attending 11 CF centres throughout Australia were then tested by both the HRM10SNP and iPLEX20SNP assays. Type-ability and discriminatory power of the methods, as well as their ability to identify commonly shared P. aeruginosa strains, were compared.
RESULTS: The in-silico analyses showed that the 1401 STs available on the PubMLST website could be divided into 927 different 20-SNP profiles (D-value = 0.999), and that most STs of national or international importance in CF could be distinguished either individually or as belonging to closely related single- or double-locus variant groups. When applied to the 506 clinical isolates, the iPLEX20SNP provided better discrimination over the HRM10SNP method with 147 different 20-SNP and 92 different 10-SNP profiles observed, respectively. For detecting the three most commonly shared Australian P. aeruginosa strains AUST-01, AUST-02 and AUST-06, the two methods were in agreement for 80/81 (98.8%), 48/49 (97.8%) and 11/12 (91.7%) isolates, respectively.
CONCLUSIONS: The iPLEX20SNP is a superior new method for broader SNP-based MLST-style investigations of P. aeruginosa. However, because of convenience and availability, the HRM10SNP method remains better suited for clinical microbiology laboratories that only utilise real-time PCR technology and where the main interest is detection of the most highly-prevalent P. aeruginosa CF strains within Australian clinics.
Resumo:
Background Person-to-person transmission of respiratory pathogens, including Pseudomonas aeruginosa, is a challenge facing many cystic fibrosis (CF) centres. Viable P aeruginosa are contained in aerosols produced during coughing, raising the possibility of airborne transmission.
Methods Using purpose-built equipment, we measured viable P aeruginosa in cough aerosols at 1, 2 and 4 m from the subject (distance) and after allowing aerosols to age for 5, 15 and 45 min in a slowly rotating drum to minimise gravitational settling and inertial impaction (duration). Aerosol particles were captured and sized employing an Anderson Impactor and cultured using conventional microbiology. Sputum was also cultured and lung function and respiratory muscle strength measured.
Results Nineteen patients with CF, mean age 25.8 (SD 9.2) years, chronically infected with P aeruginosa, and 10 healthy controls, 26.5 (8.7) years, participated. Viable P aeruginosa were detected in cough aerosols from all patients with CF, but not from controls; travelling 4 m in 17/18 (94%) and persisting for 45 min in 14/18 (78%) of the CF group. Marked inter-subject heterogeneity of P aeruginosa aerosol colony counts was seen and correlated strongly (r=0.73-0.90) with sputum bacterial loads. Modelling decay of viable P aeruginosa in a clinic room suggested that at the recommended ventilation rate of two air changes per hour almost 50 min were required for 90% to be removed after an infected patient left the room.
Conclusions: Viable P aeruginosa in cough aerosols travel further and last longer than recognised previously, providing additional evidence of airborne transmission between patients with CF.
Resumo:
Burkholderia cepacia complex organisms are important transmissible pathogens found in cystic fibrosis (CF) patients. In recent years, the rates of cross-infection of epidemic strains have declined due to effective infection control efforts. However, cases of sporadic B. cepacia complex infection continue to occur in some centers. The acquisition pathways and clinical outcomes of sporadic B. cepacia complex infection are unclear. We sought to determine the patient clinical characteristics, outcomes, incidence, and genotypic relatedness for all cases of B. cepacia complex infection at two CF centers. We also sought to study the external conditions that influence the acquisition of infection. From 2001 to 2011, 67 individual organisms were cultured from the respiratory samples of 64 patients. Sixty-five percent of the patients were adults, in whom chronic infections were more common (68%) (P = 0.006). The incidence of B. cepacia complex infection increased by a mean of 12% (95% confidence interval [CI], 3 to 23%) per year. The rates of transplantation and death were similar in the incident cases who developed chronic infection compared to those in patients with chronic Pseudomonas aeruginosa infection. Multilocus sequence typing revealed 50 individual strains from 65 isolates. Overall, 85% of the patients were infected with unique strains, suggesting sporadic acquisition of infection. The yearly incidence of nonepidemic B. cepacia complex infection was positively correlated with the amount of rainfall in the two sites examined: subtropical Brisbane (r = 0.65, P = 0.031) and tropical Townsville (r = 0.82, P = 0.002). This study demonstrates that despite strict cohort segregation, new cases of unrelated B. cepacia complex infection continue to occur. These data also support an environmental origin of infection and suggest that climate conditions may be associated with the acquisition of B. cepacia complex infections.
Resumo:
RATIONALE: Risk of infection with Pseudomonas aeruginosa in cystic fibrosis (CF) may be associated with environmental factors.
OBJECTIVES: To determine whether residential location is associated with risk of first acquisition of P. aeruginosa.
METHODS: We performed bronchoalveolar lavage and upper airway cultures in children newly diagnosed with CF to identify infection with P. aeruginosa during infancy and early childhood. Children were assessed according to their residence in a regional or metropolitan area. Multilocus sequence typing was used to determine P. aeruginosa genotype. An environmental questionnaire was also administered.
MEASUREMENTS AND MAIN RESULTS: A total of 105 of 120 (87.5%) infants diagnosed with CF were included in this study. Diagnosis in 65 infants (61.9%) followed newborn screening at mean age of 4.6 weeks. Sixty subjects (57.1%) were homozygous ΔF508, and 47 (44.8%) were female. Fifty-five (52.3%) infants were regional, of whom 26 (47.3%), compared with 9 of 50 (18.0%) metropolitan children, acquired infection with P. aeruginosa (odds ratio, 4.084; 95% confidence interval, 1.55-11.30). Age at acquisition was similar (regional: median, 2.31 yr; range, 0.27-5.96 yr; metropolitan: median, 3.10 yr, range, 0.89-3.70 yr). Strain typing identified P. aeruginosa genotypes often encountered in different ecological settings and little evidence of cross-infection. Ninety questionnaires (85.7%) were completed. Those who acquired P. aeruginosa were more likely to be living in a household that used water sprinkler systems (P = 0.032), but no differences were identified to explain increased risk of acquisition of P. aeruginosa in regional children.
CONCLUSIONS: Geographical difference in residence of children with CF was associated with increased risk of first acquisition of P. aeruginosa, usually with strains associated with the environment rather than with cross-infection.
Resumo:
Shared strains of Pseudomonas aeruginosa are now well recognized in people with cystic fibrosis (CF), and suitable P. aeruginosa laboratory typing tools are pivotal to understanding their clinical significance and guiding infection control policies in CF clinics. We therefore compared a single-nucleotide polymorphism (SNP)-based typing method using Sequenom iPLEX matrix-assisted laser desorption ionization with time-of-flight mass spectrometry (MALDI-TOF MS) with typing methods used routinely by our laboratory. We analysed 617 P. aeruginosa isolates that included 561 isolates from CF patients collected between 2001 and 2009 in two Brisbane CF clinics and typed previously by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as 56 isolates from non-CF patients analysed previously by multilocus sequence typing (MLST). The isolates were tested using a P. aeruginosa Sequenom iPLEX MALDI-TOF (PA iPLEX) method comprising two multiplex reactions, a 13-plex and an 8-plex, to characterize 20 SNPs from the P. aeruginosa housekeeping genes acsA, aroE, guaA, mutL, nuoD, ppsA and trpE. These 20 SNPs were employed previously in a real-time format involving 20 separate assays in our laboratory. The SNP analysis revealed 121 different SNP profiles for the 561 CF isolates. Overall, there was at least 96% agreement between the ERIC-PCR and SNP analyses for all predominant shared strains among patients attending our CF clinics: AUST-01, AUST-02 and AUST-06. For the less frequently encountered shared strain AUST-07, 6/25 (24%) ERIC-PCR profiles were misidentified initially as AUST-02 or as unique, illustrating the difficulty of gel-based analyses. SNP results for the 56 non-CF isolates were consistent with previous MLST data. Thus, the PA iPLEX format provides an attractive high-throughput alternative to ERIC-PCR for large-scale investigations of shared P. aeruginosa strains.
Resumo:
Recent molecular-typing studies suggest cross-infection as one of the potential acquisition pathways for Pseudomonas aeruginosa in patients with cystic fibrosis (CF). In Australia, there is only limited evidence of unrelated patients sharing indistinguishable P. aeruginosa strains. We therefore examined the point-prevalence, distribution, diversity and clinical impact of P. aeruginosa strains in Australian CF patients nationally. 983 patients attending 18 Australian CF centres provided 2887 sputum P. aeruginosa isolates for genotyping by enterobacterial repetitive intergenic consensus-PCR assays with confirmation by multilocus sequence typing. Demographic and clinical details were recorded for each participant. Overall, 610 (62%) patients harboured at least one of 38 shared genotypes. Most shared strains were in small patient clusters from a limited number of centres. However, the two predominant genotypes, AUST-01 and AUST-02, were widely dispersed, being detected in 220 (22%) and 173 (18%) patients attending 17 and 16 centres, respectively. AUST-01 was associated with significantly greater treatment requirements than unique P. aeruginosa strains. Multiple clusters of shared P. aeruginosa strains are common in Australian CF centres. At least one of the predominant and widespread genotypes is associated with increased healthcare utilisation. Longitudinal studies are now needed to determine the infection control implications of these findings.