204 resultados para Drug delivery mechanism


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: There is considerable interest in developing new multipurpose prevention technologies to address women's reproductive health needs. This study describes an innovative barrier contraceptive device--based on the SILCS diaphragm--that also provides long-term controlled release of the lead candidate anti-HIV microbicide dapivirine.

Study design: Diaphragm devices comprising various dapivirine-loaded polymer spring cores overmolded with a nonmedicated silicone elastomer sheath were fabricated by injection molding processes. In vitro release testing, thermal analysis and mechanical characterization were performed on the devices.

Results: A diaphragm device containing a polyoxymethylene spring core loaded with 10% w/w dapivirine provided continuous and controlled release of dapivirine over a 6-month period, with a mean in vitro daily release rate of 174 mcg/day. The mechanical properties of the new diaphragm were closely matched to the SILCS diaphragm.

Conclusions: The study demonstrates proof of concept for a dapivirine-releasing diaphragm with daily release quantities potentially capable of preventing HIV transmission. In discontinuous clinical use, release of dapivirine may be readily extended over 1 or more years. © 2013 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present invention provides improved intravaginal drug delivery devices, i.e., intravaginal rings, useful for the prophylactic administration of an antimicrobial compound, e.g., Dapivirine, to a human. The intravaginal rings of the invention address previous stability issues by utilizing a platinum catalyst (e.g., in the form of a platinum-siloxane complex) for the cross-linking reaction. The vaginal rings surprisingly achieve relatively high and steady release rates in vivo with a matrix ring containing a relatively small loading dose. While the matrix rings of the present invention have in vivo the steady release rates associated with reservoir rings, they are easier and less expensive to manufacture. The present invention also provides methods of blocking DNA polymerization by an HIV reverse transcriptase enzyme, methods of preventing HIV infection in a female human, methods of treating HIV infection in a female human, and methods of preparing platinum-catalyzed intravaginal rings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production. © 2012 Future Science Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study highlights the potential associated with utilising multi-component polymeric gels to formulate materials that possess unique rheological and mechanical properties. The synergistic effect* and interaction between hydroxyethylcellulose (HEC) and sodium carboxymethylcellulose (NaCMC), polymers which are commonly employed as drug delivery platforms for implantable medical devices (1), have been determined using dynamic, continuous shear and texture profile analysis. * The difference between the actual response of a binary mixture and the sum of the two components comprising the mixture Increases in polymer concentration resulted in an increase in G', G? and ?' whereas tan d decreased. Similarly, significant increases were also apparent in continuous shear and texture analysis. All binary mixtures showed positive synergy values which may suggest associative interaction between the two components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the C{double bond, long}O peak from 1708 to 1731 cm, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer-water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the M of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to assess a novel semisolid material as a potential topical drug delivery system for acute laceration. The objectives were to correlate physical characterization data using rheologic studies and to compare with clinical assessment of performance in an emergency department (ED).

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and examine clinical performance and safety in human volunteers. Experiments employing excised porcine skin and radiolabelled microorganisms showed that microorganisms can penetrate skin beyond the stratum corneum following microneedle puncture. Indeed, the numbers of microorganisms crossing the stratum corneum following microneedle puncture were greater than 105 cfu in each case. However, no microorganisms crossed the epidermal skin. When using a 21G hypodermic needle, more than 104 microorganisms penetrated into the viable tissue and 106 cfu of Candida albicans and Staphylococcus epidermidis completely crossed the epidermal skin in 24 h. The hydrogel-forming materials contained no microorganisms following de-moulding and exhibited no microbial growth during storage, while also maintaining their mechanical strength, apart from when stored at relative humidities of 86%. No microbial penetration through the swelling microneedles was detectable, while human volunteer studies confirmed that skin or systemic infection is highly unlikely when polymeric microneedles are used for transdermal drug delivery. Since no pharmacopoeial standards currently exist for microneedle-based products, the exact requirements for a proprietary product based on hydrogel-forming microneedles are at present unclear. However, we are currently working towards a comprehensive specification set for this microneedle system that may inform future developments in this regard.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel approach for the preparation of nanomaterials is developed by tuning miniemulsion reaction systems to be transparent in order to enable highly efficient photoreactions. Biodegradable nanoparticles and nanocapsules are obtained by UV-induced thiol-ene cross-linking of polylactide (PLA)-based precursor polymers preassembled in transparent miniemulsions. These well-defined nanomaterials may potentially serve as ideal scaffolds for drug delivery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Newborn babies can require significant amounts of medication containing excipients intended to improve the drug formulation. Most medicines given to neonates have been developed for adults or older children and contain excipients thought to be safe in these age groups. Many excipients have been used widely in neonates without obvious adverse effects. Some excipients may be toxic in high amounts in which case they need careful risk assessment. Alternatively, it is conceivable that ill-founded fears about excipients mean that potentially useful medicines are not made available to newborn babies. Choices about excipient exposure can occur at several stages throughout the lifecycle of a medicine, from product development through to clinical use. Making these choices requires a scalable approach to analysing the overall risk. In this contribution we examine these issues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We previously reported nonaqueous silicone elastomer gels (SEGs) for sustained vaginal administration of the CCR5-targeted entry inhibitor maraviroc (MVC). Here, we describe chemically modified SEGs (h-SEGs) in which the hydrophobic cyclomethicone component was partially replaced with relatively hydrophilic silanol-terminated polydimethylsiloxanes (st-PDMS). MVC and emtricitabine (a nucleoside reverse transcriptase inhibitor), both currently under evaluation as topical microbicides to counter sexual transmission of human immunodeficiency virus type 1 (HIV-1), were used as model antiretroviral (ARV) drugs. Gel viscosity and in vitro ARV release were significantly influenced by st-PDMS molecular weight and concentration in the h-SEGs. Unexpectedly, gels prepared with lower molecular weight grades of st-PDMS showed higher viscosities. h-SEGs provided enhanced release over 24 h compared with aqueous hydroxyethylcellulose (HEC) gels, did not modify the pH of simulated vaginal fluid (SVF), and were shown to less cytotoxic than standard HEC vaginal gel. ARV solubility increased as st-PDMS molecular weight decreased (i.e., as percentage hydroxyl content increased), helping to explain the in vitro release trends. Dye ingression and SVF dilution studies confirmed the increased hydrophilicity of the h-SEGs. h-SEGs have potential for use in vaginal drug delivery, particularly for ARV-based HIV-1 microbicides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-assembling dipeptides conjugated to naphthalene show considerable promise as nanomaterial structures, biomaterials, and drug delivery devices. Biomaterial infections are responsible for high rates of patient mortality and morbidity. The presence of biofilm bacteria, which thrive on implant surfaces, are a huge burden on healthcare budgets, as they are highly resistant to current therapeutic strategies. Ultrashort cationic self-assembled peptides represent a highly innovative and cost-effective strategy to form antibacterial nanomaterials. Lysine conjugated variants display the greatest potency with 2% w/v NapFFKK hydrogels significantly reducing the viable Staphylococcus epidermidis biofilm by 94%. Reducing the size of the R-group methylene chain on cationic moieties resulted in reduction of antibiofilm activity. The primary amine of the protruding R-group tail may not be as readily available to interact with negatively charged bacterial membranes. Cryo-SEM, FTIR, CD spectroscopy, and oscillatory rheology provided evidence of supramolecular hydrogel formation at physiological pH (pH 7.4). Cytotoxicity assays against murine fibroblast (NCTC 929) cell lines confirmed the gels possessed reduced cytotoxicity relative to bacterial cells, with limited hemolysis upon exposure to equine erythrocytes. The results presented in this paper highlight the significant potential of ultrashort cationic naphthalene peptides as future biomaterials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young's moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.