183 resultados para Discrete cosine transformation
Resumo:
Objective: Establish maternal preferences for a third-trimester ultrasound scan in a healthy, low-risk pregnant population.
Design: Cross-sectional study incorporating a discrete choice experiment.
Setting: A large, urban maternity hospital in Northern Ireland.
Participants: One hundred and forty-six women in their second trimester of pregnancy.
Methods: A discrete choice experiment was designed to elicit preferences for four attributes of a third-trimester ultrasound scan: health-care professional conducting the scan, detection rate for abnormal foetal growth, provision of non-medical information, cost. Additional data collected included age, marital status, socio-economic status, obstetric history, pregnancy-specific stress levels, perceived health and whether pregnancy was planned. Analysis was undertaken using a mixed logit model with interaction effects.
Main outcome measures: Women's preferences for, and trade-offs between, the attributes of a hypothetical scan and indirect willingness-to-pay estimates.
Results: Women had significant positive preference for higher rate of detection, lower cost and provision of non-medical information, with no significant value placed on scan operator. Interaction effects revealed subgroups that valued the scan most: women experiencing their first pregnancy, women reporting higher levels of stress, an adverse obstetric history and older women.
Conclusions: Women were able to trade on aspects of care and place relative importance on clinical, non-clinical outcomes and processes of service delivery, thus highlighting the potential of using health utilities in the development of services from a clinical, economic and social perspective. Specifically, maternal preferences exhibited provide valuable information for designing a randomized trial of effectiveness and insight for clinical and policy decision makers to inform woman-centred care.
Resumo:
Metal organic frameworks (MOFs) are among the most exciting materials discovered recently, attracting particular attention for their gas-adsorption and -storage properties. Certain MOFs show considerable structural flexibility in response to various stimuli. Although there are several examples of 'breathing' MOFs, in which structural changes occur without any bond breaking, examples of transformations in which several bonds are broken and made are much rarer. In this paper we demonstrate how a flexible MOF, Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O, can be synthesized by careful choice of the organic linker ligand. The flexibility can be controlled by addition of a supplementary coordinating molecule, which increases the thermal stability of the solid sufficiently for direct imaging with electron microscopy to be possible. We also demonstrate that the MOF shows unprecedented low-pressure selectivity towards nitric oxide through a coordination-driven gating mechanism. The chemical control over these behaviours offers new possibilities for the synthesis of MOFs with unusual and potentially exploitable properties.
Resumo:
The magnetoelectric coupling in multiferroic materials is promising for a wide range of applications, yet manipulating magnetic ordering by electric field proves elusive to obtain and difficult to control. In this paper, we explore the prospect of controlling magnetic ordering in misfit strained bismuth ferrite (BiFeO3, BFO) films, combining theoretical analysis, numerical simulations, and experimental characterizations. Electric field induced transformation from a tetragonal phase to a distorted rhombohedral one in strain engineered BFO films has been identified by thermodynamic analysis, and realized by scanning probe microscopy (SPM) experiment. By breaking the rotational symmetry of a tip-induced electric field as suggested by phase field simulation, the morphology of distorted rhombohedral variants has been delicately controlled and regulated. Such capabilities enable nanoscale control of magnetoelectric coupling in strain engineered BFO films that is difficult to achieve otherwise, as demonstrated by phase field simulations.
Resumo:
Geochemical,spectrographic, microbiological and hydrogeologic studies at the ORIFRC site indicate that groundwater transport in structured media may behave as a system of parallel flow tubes. These tubes are preferred flowpaths that enable contaminant transport parallel to bedding planes (strike) over distances of 1000s of meters. A significant flux of groundwater is focused within an interval defined by the interface between the competent bedrock and overlying highly-weathered saprolite, commonly referred to as the"transition zone." Characteristics of this transition zone are dense fractures and the relative absence of weathering products (e.g. clays)results in a significantly higher permeability compared to both the overlying clay-saprolite and underlying bedrock. Several stratabound low seismic velocity zones located below the transition zone were identified during geophysics studies and were also determined to be fractured high permeability preferred contaminant transport pathways during subsequent drilling activities. XANES analysis of precipitates collected from these deeper flow zones indicate 95% or more of the U deposited is U(VI). Linear combination fitting of the EXAFS data shows that precipitates are ~51±5% U(VI)-carbonate-like phase (e.g., liebigite) and ~49±5% U(VI) associated with an iron oxide phase; inclusion of a third component in the fit suggests that up to 15% of the U(VI) may be associated with a phosphate phase or OH- phase (e.g.,schoepite). Although precipitates with similar U(VI)-carbonate and/or phosphate associations were identified in the transition zone pathways,there were also U(VI) complexes adsorbed to mineral surfaces that would tend to be more readily mobilized. Groundwater in the different flow tubes has been determined to consist of different water quality types that vary with the solid phase encountered (e.g., clays, carbonates, clastics) as contaminants migrate along the flow paths. This lateral and vertical variability in geochemistry, particularly pH, has a significant impact on microbiological community composition and activity. Ribosomal RNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter(a diverse population of denitrifiers that are moderately acid tolerant) have a high relative abundance in the acidic source zone at the ORIFRC site.Watershed-scale analysis across different flow paths/tubes revealed strong negative correlation between pH and the absolute and relative abundance of Rhodanobacter. Recent studies also confirmed that the ORIFRC site hosts a diverse fungal community, with significant differences observed between acidic (pH <5) and circumneutral (>5) wells. The lack of nitrous oxide reduction capability in fungi, and the detection of denitrification potential in slurry microcosms suggest that fungi may have aheretofore under appreciated role in biogeochemical transformations, with implications forsite remediation and greenhouse gas emissions. Further research is needed to determine if these organisms can influence U(VI) mobility either directly through immobilization or indirectly through the depletion of nitrate.In conclusion, additional studies are required to quantify the processes (e.g., solid phase reactions, recharge, diffusion, microbial interactions) that are occurring along the groundwater flow tubes identified at the ORIFRC so predictive models can be parameterized and used to assess long-term contaminant fate and transport and remedial options.
Resumo:
Particulate systems are of interest in many disciplines. They are often investigated using the discrete element method because of its capability to investigate particulate systems at the individual particle scale. To model the interaction between two particles and between a particle and a boundary, conventional discrete element models use springs and dampers in both the normal and tangential directions. The significance of particle rotation has been highlighted in both numerical studies and physical experiments. Several researchers have attempted to incorporate a rotational torque to account for the rolling resistance or rolling friction by developing different models. This paper presents a review of the commonly used models for rolling resistance and proposes a more general model. These models are classified into four categories according to their key characteristics. The robustness of these models in reproducing rolling resistance effects arising from different physical situations was assessed by using several benchmarking test cases. The proposed model can be seen to be more general and suitable for modelling problems involving both dynamic and pseudo-static regimes. An example simulation of the formation of a 2D sandpile is also shown. For simplicity, all formulations and examples are presented in 2D form, though the general conclusions are also applicable to 3D systems.
Resumo:
Our earliest version of the Thomas Rymer story is the medieval romance Thomas off Ersseldoune (c.1430). There is a four hundred year lacuna before the ballad “Thomas Rymer”, our next surviving version, is recorded in the early 1800s. In the intervening time the narrative changed very little but the dynamic of the piece, radically. The romance transformed into the highly subversive ballad, “Thomas Rymer”. Central to this transformation is the reconceptualization of the romance's heroine. Referred to simply as the “lufly lady” and caught between her husband, the fay King, and a mere mortal, Thomas, she becomes in the ballad the powerful Queen of the Fairies. The ballad is structured around a series of revelations in which the enigmatic Queen assumes the roles of Eve and Mary, and finally Christ Himself. I will explore the implications of this extraordinary ballad. Moreover, I suggest that it is Queen Elizabeth herself who, ironically, enables the heroine's transformation. “Ironically” because it appears that it was Elizabeth's own restrictions, designed to suppress heretical, seditious or radical literature, which forced Thomas off Ersseldoune (and many other romances which employed religious imagery or figures) out of the written domain and into the oral tradition. And yet, it is Elizabeth who, in creating the image of herself as a female prince, as the Faerie Queen, inspires a new literary vocabulary designed to describe female executive power, without which it would have been impossible to imagine a figure such as the ballad's Queen of the Fairies.
Resumo:
This research aims to use the multivariate geochemical dataset, generated by the Tellus project, to investigate the appropriate use of transformation methods to maintain the integrity of geochemical data and inherent constrained behaviour in multivariate relationships. The widely used normal score transform is compared with the use of a stepwise conditional transform technique. The Tellus Project, managed by GSNI and funded by the Department of Enterprise Trade and Development and the EU’s Building Sustainable Prosperity Fund, involves the most comprehensive geological mapping project ever undertaken in Northern Ireland. Previous study has demonstrated spatial variability in the Tellus data but geostatistical analysis and interpretation of the datasets requires use of an appropriate methodology that reproduces the inherently complex multivariate relations. Previous investigation of the Tellus geochemical data has included use of Gaussian-based techniques. However, earth science variables are rarely Gaussian, hence transformation of data is integral to the approach. The multivariate geochemical dataset generated by the Tellus project provides an opportunity to investigate the appropriate use of transformation methods, as required for Gaussian-based geostatistical analysis. In particular, the stepwise conditional transform is investigated and developed for the geochemical datasets obtained as part of the Tellus project. The transform is applied to four variables in a bivariate nested fashion due to the limited availability of data. Simulation of these transformed variables is then carried out, along with a corresponding back transformation to original units. Results show that the stepwise transform is successful in reproducing both univariate statistics and the complex bivariate relations exhibited by the data. Greater fidelity to multivariate relationships will improve uncertainty models, which are required for consequent geological, environmental and economic inferences.