195 resultados para Cellular and Molecular Physiology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. To examine the association between a posteriori–derived dietary patterns (DP) and retinal vessel caliber in an elderly population.

Methods. This was a cross-sectional study of 288 elderly adults (>65 years) who participated in the European Eye study (EUREYE) Northern Irish cohort. DP were extracted using principal component analysis from completed food frequency questionnaires. Semi-automated computer grading was used to determine the mean retinal vessel diameters (central retinal arteriole equivalent [CRAE] and central retinal venule equivalent [CRVE]) from digitized visual field one images using a standard measurement protocol.

Results. Three major DP were identified in this population, which accounted for 21% of the total variance: a “healthy” pattern with high factor loadings for oily fish, fruits and vegetables, and olive oil; an “unhealthy” pattern with high factor loadings for red and processed meat, refined grains, eggs, butter, sugar and sweets; and a “snack and beverage” pattern with high factor loading for pizza, nuts, and coffee. Multivariable linear regression analysis indicated no significant association between major identified DP and mean CRAE or CRVE in all models.

Conclusions. This is the first study to investigate associations between a posteriori–derived DP and retinal vessel caliber. There was no evidence of a relationship between extracted DP and retinal vessel measurements in this population. However, it is possible that potentially important relationships exist between single nutrients or foods and vessel diameters that cannot be identified using a DP approach. Further studies to examine the role of dietary factors in the microcirculation are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One novel Kunitz BPTI-like peptide designated as BBPTI-1, with chymotrypsin inhibitory activity was identified from the venom of Burmese Daboia russelii siamensis. It was purified by three steps of chromatography including gel filtration, cation exchange and reversed phase. A partial N-terminal sequence of BBPTI-1, HDRPKFCYLPADPGECLAHMRSF was obtained by automated Edman degradation and a Ki value of 4.77. nM determined. Cloning of BBPTI-1 including the open reading frame and 3' untranslated region was achieved from cDNA libraries derived from lyophilized venom using a 3' RACE strategy. In addition a cDNA sequence, designated as BBPTI-5, was also obtained. Alignment of cDNA sequences showed that BBPTI-5 exhibited an identical sequence to BBPTI-1 cDNA except for an eight nucleotide deletion in the open reading frame. Gene variations that represented deletions in the BBPTI-5 cDNA resulted in a novel protease inhibitor analog. Amino acid sequence alignment revealed that deduced peptides derived from cloning of their respective precursor cDNAs from libraries showed high similarity and homology with other Kunitz BPTI proteinase inhibitors. BBPTI-1 and BBPTI-5 consist of 60 and 66 amino acid residues respectively, including six conserved cysteine residues. As these peptides have been reported to have influence on the processes of coagulation, fibrinolysis and inflammation, their potential application in biomedical contexts warrants further investigation. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liquid state structure of the ionic liquid, 1-ethyl-3-methylimidazolium acetate, and the solute/solvent structure of glucose dissolved in the ionic liquid at a 1: 6 molar ratio have been investigated at 323 K by molecular dynamics simulations and neutron diffraction experiments using H/D isotopically substituted materials. Interactions between hydrogen-bond donating cation sites and polar, directional hydrogen-bond accepting acetate anions are examined. Ion-ion radial distribution functions for the neat ionic liquid, calculated from both MD and derived from the empirical potential structure refinement model to the experimental data, show the alternating shell-structure of anions around the cation, as anticipated. Spatial probability distributions reveal the main anion-to-cation features as in-plane interactions of anions with imidazolium ring hydrogens and cation-cation planar stacking. Interestingly, the presence of the polarised hydrogen-bond acceptor anion leads to increased anion-anion tail-tail structuring within each anion shell, indicating the onset of hydrophobic regions within the anion regions of the liquid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Au nanoparticles (AuNPs) have attracted a great interest in fabrication of various biosensor systems for analysis of cellular and biomolecular recognitions. In conjunction with vast conjugation chemistry available, the materials are easily coupled with biomolecules such as nucleic acids, antigens or antibodies in order to achieve their many potential applications as ligand carriers or transducing platforms for preparation, detection and quantification purposes. Furthermore, the nanoparticles possess easily tuned and unique optical/ physical/ chemical characteristics, and high surface areas, making them ideal candidates to this end. In this topic, sensing mechanisms based on localized surface plasmon resonance (LSPR), particle aggregation, catalytic property, and Fluorescence Resonance Energy Transfer (FRET) of AuNPs as well as barcoding technologies including DNA biobarcodes will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of hydrogen sulfide (H2 S) in inflammation remains unclear with both pro- and anti-inflammatory actions of this gas described. We have now assessed the effect of GYY4137 (a slow-releasing H2 S donor) on lipopolysaccharide (LPS)-evoked release of inflammatory mediators from human synoviocytes (HFLS) and articular chondrocytes (HAC) in vitro. We have also examined the effect of GYY4137 in a complete Freund's adjuvant (CFA) model of acute joint inflammation in the mouse. GYY4137 (0.1-0.5 mM) decreased LPS-induced production of nitrite (NO2 (-) ), PGE2 , TNF-a and IL-6 from HFLS and HAC, reduced the levels and catalytic activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced LPS-induced NF-?B activation in vitro. Using recombinant human enzymes, GYY4137 inhibited the activity of COX-2, iNOS and TNF-a converting enzyme (TACE). In the CFA-treated mouse, GYY4137 (50 mg/kg, i.p.) injected 1 hr prior to CFA increased knee joint swelling while an anti-inflammatory effect, as demonstrated by reduced synovial fluid myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG) activity and decreased TNF-a, IL-1ß, IL-6 and IL-8 concentration, was apparent when GYY4137 was injected 6 hrs after CFA. GYY4137 was also anti-inflammatory when given 18 hrs after CFA. Thus, although GYY4137 consistently reduced the generation of pro-inflammatory mediators from human joint cells in vitro, its effect on acute joint inflammation in vivo depended on the timing of administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of molecular interaction and conformational dynamics of biomolecules is of paramount importance in understanding of their vital functions in complex biological systems, disease detection, and new drug development. Plasmonic biosensors based upon surface plasmon resonance and localized surface plasmon resonance have become the predominant workhorse for detecting accumulated biomass caused by molecular binding events. However, unlike surface-enhanced Raman spectroscopy (SERS), the plasmonic biosensors indeed are not suitable tools to interrogate vibrational signatures of conformational transitions required for biomolecules to interact. Here, we show that plasmonic metamaterials can offer two transducing channels for parallel acquisition of optical transmission and sensitive SERS spectra at the biointerface, simultaneously probing the conformational states and binding affinity of biomolecules, e.g. G-quadruplexes, in different environments (Fig. 1). We further demonstrate the use of the metamaterials for fingerprinting and detection of arginine-glycine-glycine domain of nucleolin, a cancer biomarker which specifically binds to a G-quadruplex, with the picomolar sensitivity. The dual-mode nanosensor will significantly contribute to unraveling the complexes of the conformational dynamics of biomolecules as well as to improving specificity of biodetection assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of binding recognition and conformation of biomolecules is of paramount important in understanding of their vital functions in complex biological systems. By enabling sub-wavelength light localization and strong local field enhancement, plasmonic biosensors have become dominant tools used for such analysis owing to their label-free and real-time attributes1,2. However, the plasmonic biosensors are not well-suited to provide information regarding conformation or chemical fingerprint of biomolecules. Here, we show that plasmonic metamaterials, consisting of periodic arrays of artificial split-ring resonators (SRRs)3, can enable capabilities of both sensing and fingerprinting of biomolecules. We demonstrate that by engineering geometry of individual SRRs, localized surface plasmon resonance (LSPR) frequency of the metamaterials could be tuned to visible-near infrared regimes (Vis-NIR) such that they possess high local field enhancement for surface-enhanced Raman scattering spectroscopy (SERS). This will provide the basis for the development of a dual mode label-free conformational-resolving and quantitative detection platform. We present here the ability of each sensing mode to independently detect binding adsorption and to identify different conformational states of Guanine (G)-rich DNA monolayers in different environment milieu. Also shown is the use of the nanosensor for fingerprinting and detection of Arginine-Glycine-Glycine (RGG) peptide binding to the G-quadruplex aptamer. The dual-mode nanosensor will significantly contribute to unraveling the complexes of the conformational dynamics of biomolecules as well as to improving specificity of biodetection assays that the conventional, population-averaged plasmonic biosensors cannot achieve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously showed that extravasated, modified LDL is implicated in pericyte loss in diabetic retinopathy (DR). Here, we investigate whether modified LDL induces apoptosis in retinal Müller glial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major components of blood vessels are the vascular endothelium and its supporting smooth muscle. Significant strides have been made in the understanding of the cellular and molecular biology of these two cell types and in particular their interactions have been the subject of much interest and debate over the past two decades. The vascular endothelium is now known to profoundly influence the synthetic and motor functions of the underlying smooth muscle and participate in the pathogenesis of all the major vascular disorders. Similarly, the vascular smooth muscle has important effects on the overlying endothelium, and any disruption in the cellular physiology of either cell type can result in dysfunction with important effects on blood flow and vascular permeability The majority of this accumulated knowledge relates to the vascular cells of the macrocirculation. Pericytes are the supporting cells of the microvasculature and a body of evidence is now available to show that similar regulatory mechanisms and vessel-wall cross-talk exists between these cells and the microvascular endothelium. Nowhere are these interactions more important than in the retinal microcirculation where autoregulation is vital for the maintenance of smooth and uninterrrupted blood flow. This review focuses on the interactions between retinal microvascular endothelial cells and their associated pericytes and examines the role of the endothelial cell and the pericyte in the pathogenesis of disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To consider whether STZ-induced hyperglycemia renders rat retinal function and ocular blood flow more susceptible to acute intraocular pressure (IOP) challenge.

METHODS: Retinal function (electroretinogram, ERG) was measured during acute IOP challenge (10-100 mmHg, 5 mmHg increments, 3 min/step, vitreal cannulation) in adult Long-Evans rats (6-week old, citrate: n=6, STZ: n=10) 4 weeks after citrate buffer or streptozotocin (STZ, 65 mg/kg, blood glucose > 15 mmol/l) injection. At each IOP, dim and bright flash (-4.56, -1.72 log cd.s.m^-2) ERG responses were recorded to measure inner retinal and ON-bipolar cell function, respectively. Ocular blood flow (laser Doppler flowmetry, citrate; n=6, STZ; n=10) was also measured during acute IOP challenge. Retinae were isolated for qPCR analysis of nitric oxide synthase mRNA expression endothelial, eNos; inducible, iNos; neuronal, nNos).

RESULTS: STZ-induced diabetes increased the susceptibility of inner retinal (IOP at 50% response, 60.1, CI: 57.0-62.0 mmHg vs. citrate: 67.5, CI: 62.1-72.4 mmHg) and ON-bipolar cell function (STZ: 60.3, CI: 58.0-62.8 mmHg vs. citrate: 65.1, CI: 58.0-62.78 mmHg) and ocular blood flow (43.9, CI: 40.8-46.8 vs. citrate: 53.4, CI: 50.7-56.1 mmHg) to IOP challenge. Citrate eyes showed elevated eNos mRNA (+49.7%) after IOP stress, an effect not found in STZ-diabetic eyes (-5.7%, P<0.03). No difference was observed for iNos or nNos (P>0.05) following IOP elevation.

CONCLUSIONS: STZ-induced diabetes increased functional susceptibility during acute IOP challenge. This functional vulnerability is associated with a reduced capacity for diabetic eyes to upregulate eNOS expression and to autoregulate blood flow in response to stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-small cell lung carcinoma remains by far the leading cause of cancer-related deaths worldwide. Overexpression of FLIP, which blocks the extrinsic apoptotic pathway by inhibiting caspase-8 activation, has been identified in various cancers. We investigated FLIP and procaspase-8 expression in NSCLC and the effect of HDAC inhibitors on FLIP expression, activation of caspase-8 and drug resistance in NSCLC and normal lung cell line models. Immunohistochemical analysis of cytoplasmic and nuclear FLIP and procaspase-8 protein expression was carried out using a novel digital pathology approach. Both FLIP and procaspase-8 were found to be significantly overexpressed in tumours, and importantly, high cytoplasmic expression of FLIP significantly correlated with shorter overall survival. Treatment with HDAC inhibitors targeting HDAC1-3 downregulated FLIP expression predominantly via post-transcriptional mechanisms, and this resulted in death receptor- and caspase-8-dependent apoptosis in NSCLC cells, but not normal lung cells. In addition, HDAC inhibitors synergized with TRAIL and cisplatin in NSCLC cells in a FLIP- and caspase-8-dependent manner. Thus, FLIP and procaspase-8 are overexpressed in NSCLC, and high cytoplasmic FLIP expression is indicative of poor prognosis. Targeting high FLIP expression using HDAC1-3 selective inhibitors such as entinostat to exploit high procaspase-8 expression in NSCLC has promising therapeutic potential, particularly when used in combination with TRAIL receptor-targeted agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we report the intra- and inter-molecular assembly of a {V5O9} subunit. This mixed-valent structural motif can be stabilised as [V5O9(L1–3)4]5−/9− (1–3) by a range of organoarsonate ligands (L1–L3) whose secondary functionalities influence its packing arrangement within the crystal structures. Variation of the reaction conditions results in the dodecanuclear cage structure [V12O14(OH)4(L1)10]4− (4) where two modified convex building units are linked via two dimeric {O4VIV(OH)2VIVO4} moieties. Bi-functional phosphonate ligands, L4–L6 allow the intramolecular connectivity of the {V5O9} subunit to give hybrid capsules [V10O18(L4–6)4]10− (5–7). The dimensions of the electrophilic cavities of the capsular entities are determined by the incorporated ligand type. Mass spectrometry experiments confirm the stability of the complexes in solution. We investigate and model the temperature-dependent magnetic properties of representative complexes 1, 4, 6 and 7 and provide preliminary cell-viability studies of three different cancer cell lines with respect to Na8H2[6]·36H2O and Na8H2[7]·2DMF·29H2O.