223 resultados para BLOOD CENTER
Resumo:
Committees worldwide have set almost identical folate recommendations for the prevention of the first occurrence of neural tube defects (NTDs). We evaluate these recommendations by reviewing the results of intervention studies that examined the response of red blood cell folate to altered folate intake. Three options are suggested to achieve the extra 400 mu g folic acid/d being recommended by the official committees: increased intake of folate-rich foods, dietary folic acid supplementation, and folic acid fortification of food. A significant increase in foods naturally rich in folates was shown to be a relatively ineffective means of increasing red blood cell folate status in women compared with equivalent intakes of folic acid-fortified food, presumably because the synthetic form of the vitamin is more stable and more bioavailable. Although folic acid supplements are highly effective in optimizing folate status, supplementation is not an effective strategy for the primary prevention of NTDs because of poor compliance. Thus, food fortification is seen by many as the only option likely to succeed. Mandatory folic acid fortification of grain products was introduced recently in the United States at a level projected to provide an additional mean intake of 100 mu g folic acid/d, but some feel that this policy does not go far enough. A recent clinical trial predicted that the additional intake of folic acid in the United States will reduce NTDs by >20%, whereas 200 mu g/d would be highly protective and is the dose also shown to be optimal in lowering plasma homocysteine, with possible benefits in preventing cardiovascular disease. Thus, an amount lower than the current target of an extra 400 mu g/d may be sufficient to increase red blood cell folate to concentrations associated with the lowest risk of NTDs, but further investigation is warranted to establish the optimal amount.
Resumo:
ABSTRACT BACKGROUND: Acute exposure to high-altitude stimulates free radical formation in lowlanders yet whether this persists during chronic exposure in healthy well-adapted and maladapted highlanders suffering from chronic mountain sickness (CMS) remains to be established. METHODS: Oxidative-nitrosative stress [ascorbate radical (A•-), electron paramagnetic resonance spectroscopy and nitrite (NO2-), ozone-based chemiluminescence] was assessed in venous blood of 25 male highlanders living at 3,600 m with (n = 13, CMS+) and without (n = 12, CMS-) CMS. Twelve age and activity-matched healthy male lowlanders were examined at sea-level and during acute hypoxia. We also measured flow-mediated dilatation (FMD), arterial stiffness (AIx-75) and carotid intima-media thickness (IMT). RESULTS: Compared to normoxic lowlanders, oxidative-nitrosative stress was moderately increased in CMS- (P < 0.05) as indicated by elevated A•- (3,191 ± 457 vs. 2,640 ± 445 arbitrary units (AU)] and lower NO2- (206 ± 55 vs. 420 ± 128 nmol/L) whereas vascular function remained preserved. This was comparable to that observed during acute hypoxia in lowlanders in whom vascular dysfunction is typically observed. In contrast, this response was markedly exaggerated in CMS+ (A•-: 3,765 ± 429 AU and NO2- : 148 ± 50 nmol/L) compared to both CMS- and lowlanders (P < 0.05). This was associated with systemic vascular dysfunction as indicated by lower (P < 0.05 vs. CMS-) FMD (4.2 ± 0.7 vs. 7.6 ± 1.7 %) and increased AIx-75 (23 ± 8 vs. 12 ± 7 %) and carotid IMT (714 ± 127 vs. 588 ± 94 µM). CONCLUSIONS: Healthy highlanders display a moderate sustained elevation in oxidative-nitrosative stress that unlike the equivalent increase evoked by acute hypoxia in healthy lowlanders, failed to affect vascular function. Its more marked elevation in patients with CMS may contribute to systemic vascular dysfunction.Clinical Trials Gov Registration # NCT011827921Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, Wales, UK;2Sondes Moléculaires en Biologie et Stress Oxydant, Institut de Chimie Radicalaire, CNRS UMR 7273, Aix-Marseille University, France;3Department of Cardiology, University Hospital of Bern, Bern, Switzerland;4Institute of Clinical Physiology, CNR, Pisa, Italy;5Instituto Bolivano de Biologia de Altura, La Paz, Bolivia;6Centre for Clinical and Population Sciences, Queen's University Belfast, Belfast, Northern Ireland,7Botnar Center for Clinical Research, Hirslanden Group, Lausanne, Switzerland;8Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile and9Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland*Drs Bailey, Rimoldi, Scherrer and Sartori contributed equally to this workCorrespondence: Damian Miles Bailey, Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, UK CF37 4AT email: dbailey1@glam.ac.uk.
Resumo:
A key pathological feature of late-onset Alzheimer's disease (LOAD) is the abnormal extracellular accumulation of the amyloid-ß (Aß) peptide. Thus, altered Aß degradation could be a major contributor to the development of LOAD. Variants in the gene encoding the Aß-degrading enzyme, angiotensin-1 converting enzyme (ACE) therefore represent plausible candidates for association with LOAD pathology and risk. Following Alzgene meta-analyses of all published case-control studies, the ACE variants rs4291 and rs1800764 showed significant association with LOAD risk. Furthermore ACE haplotypes are associated with both plasma ACE levels and LOAD risk. We tested three ACE variants (rs4291, rs4343, and rs1800764) for association with LOAD in ten Caucasian case-control populations (n = 8,212). No association was found using multiple logistic models (all p > 0.09). We found no population heterogeneity (all p > 0.38) or evidence for association with LOAD risk following meta-analysis of the ten populations for rs4343 (OR = 1.00), rs4291 (OR = 0.97), or rs1800764 (OR = 0.99). Although we found no haplotypic association in our complete dataset (p = 0.51), a significant global haplotypic p-value was observed in one population (p = 0.007) due to an association of the H3 haplotype (OR = 0.72, p = 0.02) and a trend towards an association of H4 (OR = 1.38, p = 0.09) and H7 (OR = 2.07, p = 0.08) although these did not survive Bonferroni correction. Previously reported associations of ACE variants with LOAD will be diminished following this study. At best, ACE variants have modest effect sizes, which are likely part of a complex interaction between genetic, phenotypic and pharmacological effects that would be undetected in traditional case-control studies.
Resumo:
We have investigated the relationship between erythropoietin (Epo) and pH, PaO2 and haematocrit in 100 cord blood samples obtained at Caesarean section prior to labour. Of 82 term (> 37 weeks) infants, 64 were appropriately grown (10th-90th centiles), and their mean cord serum Epo and cord blood Epo was 23 +/- 8 mU/ml (mean +/- SD). Strong inverse correlations were found between cord serum Epo and cord blood pH (r = -0.74; p <0.0001), and between cord serum Epo and cord blood PaO2 (r = -0.55; p <0.0001), but not between cord serum Epo and cord haematocrit (r = 0.02; p <0.9). For the 18 preterm babies (gestation 32.4 +/- 4.1 weeks, birth weight 1,820 +/- 476 g), the Epo level was 36 +/- 8 mU/ml, which was not significantly greater than for the term babies. Strong inverse correlations were again found between Epo and pH (r = -0.87; p <0.0001) and Epo and PaO2 (r = -0.69; p <0.002). Babies from complicated pregnancies (intra-uterine growth retardation, pre-eclampsia, antepartum haemorrhage, diabetes mellitus and fetal distress) tended to have higher Epo levels. Thirteen babies had Epo levels > 40 mU/ml, and 11 (85%) of these required neonatal intensive care. Cord serum Epo correlates better with oxygen tension and pH at birth than with fetal growth and haematocrit, which are measures of chronic stress to the fetus.
Resumo:
In contrast to the multitude of studies on fungal PCR assay methods, little work has been reported evaluating Candida PCR performance when using whole blood compared with serum in candidaemic patients. Here, a comparison of the performance of whole-blood and serum specimens using a set of real-time PCR Candida species assays is described. Specimens were collected prospectively from non-neutropenic adults who were recruited to a diagnostic clinical trial, the primary purpose of which was to verify the performance of the assays using serum; in all, 104 participants also had whole-blood specimens submitted for analysis in addition to the serum specimen. Of these participants, 10 had laboratory-confirmed candidaemia and 94 were categorized as being 'unlikely' to have invasive Candida infection. PCR results from the whole-blood specimens are presented here and compared with the results from serum specimens in this subgroup among whom both specimen types were obtained contemporaneously. All participants with candidaemia were PCR-positive from serum samples; however, only seven were PCR-positive from whole blood. All specimens from patients in the 'unlikely' category were PCR-negative in both types of specimen. Moreover, DNA extraction from serum required 1 h; extraction from whole blood required approximately 3 h. These data tentatively suggest that, overall, serum is an appropriate specimen for Candida PCR for detection of candidaemia in non-neutropenic adults.
Resumo:
The limitations of classical diagnostic methods for invasive Candida infections have led to the development of molecular techniques such as real-time PCR to improve diagnosis. However, the detection of low titres of Candida DNA in blood from patients with candidaemia requires the use of extraction methods that efficiently lyse yeast cells and recover small amounts of DNA suitable for amplification. In this study, a Candida-specific real-time PCR assay was used to detect Candida albicans DNA in inoculated whole blood specimens extracted using seven different extraction protocols. The yield and quality of total nucleic acids were estimated using UV absorbance, and specific recovery of C. albicans genomic DNA was estimated quantitatively in comparison with a reference (Qiagen kit/lyticase) method currently in use in our laboratory. The extraction protocols were also compared with respect to sensitivity, cost and time required for completion. The TaqMan PCR assay used to amplify the DNA extracts achieved high levels of specificity, sensitivity and reproducibility. Of the seven extraction protocols evaluated, only the MasterPure yeast DNA extraction reagent kit gave significantly higher total nucleic acid yields than the reference method, although nucleic acid purity was highest using either the reference or YeaStar genomic DNA kit methods. More importantly, the YeaStar method enabled C. albicans DNA to be detected with highest sensitivity over the entire range of copy numbers evaluated, and appears to be an optimal method for extracting Candida DNA from whole blood.
Resumo:
In view of both the delay in obtaining identification by conventional methods following blood-culture positivity in patients with candidaemia and the close relationship between species and fluconazole (FLC) susceptibility, early speciation of positive blood cultures has the potential to influence therapeutic decisions. The aim was to develop a rapid test to differentiate FLC-resistant from FLC-sensitive Candida species. Three TaqMan-based real-time PCR assays were developed to identify up to six Candida species directly from BacT/Alert blood-culture bottles that showed yeast cells on Gram staining at the time of initial positivity. Target sequences in the rRNA gene complex were amplified, using a consensus two-step PCR protocol, to identify Candida albicans, Candida parapsilosis, Candida tropicalis, Candida dubliniensis, Candida glabrata and Candida krusei; these are the most commonly encountered Candida species in blood cultures. The first four of these (the characteristically FLC-sensitive group) were identified in a single reaction tube using one fluorescent TaqMan probe targeting 1 8S rRNA sequences conserved in the four species. The FLC-resistant species C. krusei and C. glabrata were detected in two further reactions, each with species-specific probes. This method was validated with clinical specimens (blood cultures) positive for yeast (n=33 sets) and the results were 100% concordant with those of phenotypic identification carried out concomitantly. The reported assay significantly reduces the time required to identify the presence of C. glabrata and C. krusei in comparison with a conventional phenotypic method, from ~72 to
Comparison of media for optimal recovery of Candida albicans and Candida glabrata from blood culture
Resumo:
Candida spp., mainly Candida albicans, are frequently responsible for complications in immunocompromised patients. There are limited data comparing recovery efficiency using simple non-selective basal broth media.
Resumo:
Umbilical cord blood-derived endothelial colony-forming cells (UCB-ECFC) show utility in neovascularization, but their contribution to osteogenesis has not been defined. Cocultures of UCB-ECFC with human fetal-mesenchymal stem cells (hfMSC) resulted in earlier induction of alkaline phosphatase (ALP) (Day 7 vs. 10) and increased mineralization (1.9×; p <.001) compared to hfMSC monocultures. This effect was mediated through soluble factors in ECFC-conditioned media, leading to 1.8-2.2× higher ALP levels and a 1.4-1.5× increase in calcium deposition (p <.01) in a dose-dependent manner. Transcriptomic and protein array studies demonstrated high basal levels of osteogenic (BMPs and TGF-ßs) and angiogenic (VEGF and angiopoietins) regulators. Comparison of defined UCB and adult peripheral blood ECFC showed higher osteogenic and angiogenic gene expression in UCB-ECFC. Subcutaneous implantation of UCB-ECFC with hfMSC in immunodeficient mice resulted in the formation of chimeric human vessels, with a 2.2-fold increase in host neovascularization compared to hfMSC-only implants (p = .001). We conclude that this study shows that UCB-ECFC have potential in therapeutic angiogenesis and osteogenic applications in conjunction with MSC. We speculate that UCB-ECFC play an important role in skeletal and vascular development during perinatal development but less so in later life when expression of key osteogenesis and angiogenesis genes in ECFC is lower.