506 resultados para Astrophysics.
Resumo:
Electron attachment to NCCCCN, dicyanoacetylene (2-butynedinitrile), has been observed. Metastable parent anions, NCCCCN-*, with microsecond or longer lifetimes are formed close to 0 eV electron energy with a cross section of >= 0.25 angstrom(2). The stability of NCCCCN suggests that radiative attachment to NCCCCN and similar linear carbon chain molecules may be an important mechanism for the formation of negatively charged molecular ions in astrophysical environments. CCCN- and CN- fragment anions are formed at similar to 3 and similar to 6 eV.
Resumo:
Context. Electron-impact excitation collision strengths are required for the analysis and interpretation of stellar observations.
Aims. This calculation aims to provide effective collision strengths for the Mg V ion for a larger number of transitions and for a greater temperature range than previously available, using collision strength data that include contributions from resonances.
Methods. A 19-state Breit-Pauli R-matrix calculation was performed. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s22p4, 2s2p5, 2p6, 2s22p33s, and 2s22p33p. These target states give rise to 37 fine-structure levels and 666 possible transitions. The effective collision strengths were calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities.
Results. The non-zero effective collision strengths for transitions between the fine-structure levels are given for electron temperatures in the range = 3.0 - 7.0. Data for transitions among the 5 fine-structure levels arising from the 2s22p4 ground state configurations, seen in the UV range, are discussed in the paper, along with transitions in the EUV range – transitions from the ground state 3P levels to 2s2p5?3P levels. The 2s22p4?1D–2s2p5?1P transition is also noted. Data for the remaining transitions are available at the CDS.
Resumo:
We present results from a search for additional transiting planets in 24 systems already known to contain a transiting planet. We model the transits due to the known planet in each system and subtract these models from light curves obtained with the SuperWASP (Wide Angle Search for Planets) survey instruments. These residual light curves are then searched for evidence of additional periodic transit events. Although we do not find any evidence for additional planets in any of the planetary systems studied, we are able to characterize our ability to find such planets by means of Monte Carlo simulations. Artificially generated transit signals corresponding to planets with a range of sizes and orbital periods were injected into the SuperWASP photometry and the resulting light curves searched for planets. As a result, the detection efficiency as a function of both the radius and orbital period of any second planet is calculated. We determine that there is a good (>50 per cent) chance of detecting additional, Saturn-sized planets in P ~ 10 d orbits around planet-hosting stars that have several seasons of SuperWASP photometry. Additionally, we confirm previous evidence of the rotational stellar variability of WASP-10, and refine the period of rotation. We find that the period of the rotation is 11.91 +/- 0.05 d, and the false alarm probability for this period is extremely low (~10-13).
Resumo:
We report that a Jupiter-mass planet, WASP-7b, transits the V = 9.5 star HD 197286 every 4.95 d. This is the brightest discovery from the WASP-South transit survey so far and is currently the brightest transiting-exoplanet system in the southern hemisphere. WASP-7b is among the densest of the known Jupiter-mass planets, suggesting that it has a massive core. The planet mass is 0.96+0.12 -0.18 M Jup, the radius is 0.915+0.046 -0.040 R Jup, and the density is 1.26+0.25 -0.21 ?Jup (1.67+0.33 -0.28 g cm-3).
Resumo:
We present observations of two new single-lined eclipsing binaries, both consisting of an Am star and an M-dwarf, discovered by the Wide Angle Search for Planets transit photometry survey. Using WASP photometry and spectroscopic measurements we find that HD 186753B has an orbital period of P=1.9194 days, a mass of M=0.24±0.02~M? and radius of R=0.31+0.06-0.06~R?; and that TCY7096-222-1B has an orbital period of P=8.9582 days, a mass of between 0.29 and 0.54 M? depending on eccentricity and radius of R=0.263+0.02-0.07~R?. We find that the Am stars have relatively low rotational velocities that closely match the orbital velocities of the M-dwarfs, suggesting that they have been “spun-down” by the M-dwarfs.
Resumo:
We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (~600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J - K colour with an rms scatter of only 2 per cent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling time-scale for angular momentum transport from a rapidly spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onwards stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of the order of 9 per cent (rms), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P ~ t0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.
Resumo:
Aims. We aim to investigate the chemistry and gas phase abundance of HNCO and the variation of the HNCO/CS abundance ratio as a diagnostic of the physics and chemistry in regions of massive star formation. Methods. A numerical-chemical model has been developed which self-consistently follows the chemical evolution of a hot core. The model comprises of two distinct stages. The first stage follows the isothermal, modified free-fall collapse of a molecular dark cloud. This is immediately followed by an increase in temperature which represents the switch on of a central massive star and the subsequent evolution of the chemistry in a hot, dense gas cloud (the hot core). During the collapse phase, gas species are allowed to accrete on to grain surfaces where they can participate in further reactions. During the hot core phase surface species thermally desorb back in to the ambient gas and further chemical evolution takes place. For comparison, the chemical network was also used to model a simple dark cloud and photodissociation regions. Results. Our investigation reveals that HNCO is inefficiently formed when only gas-phase formation pathways are considered in the chemical network with reaction rates consistent with existing laboratory data. This is particularly true at low temperatures but also in regions with temperatures up to ~200 K. Using currently measured gas phase reaction rates, obtaining the observed HNCO abundances requires its formation on grain surfaces – similar to other “hot core” species such as CH3OH. However our model shows that the gas phase HNCO in hot cores is not a simple direct product of the evaporation of grain mantles. We also show that the HNCO/CS abundance ratio varies as a function of time in hot cores and can match the range of values observed. This ratio is not unambiguously related to the ambient UV field as been suggested – our results are inconsistent with the hypothesis of Martín et al. (2008, ApJ, 678, 245). In addition, our results show that this ratio is extremely sensitive to the initial sulphur abundance. We find that the ratio grows monotonically with time with an absolute value which scales approximately linearly with the S abundance at early times.
Resumo:
Saturable absorption is a phenomenon readily seen in the optical and infrared wavelengths. It has never been observed in core-electron transitions owing to the short lifetime of the excited states involved and the high intensities of the soft X-rays needed. We report saturable absorption of an L-shell transition in aluminium using record intensities over 10(16)W cm(-2) at a photon energy of 92 eV. From a consideration of the relevant timescales, we infer that immediately after the X-rays have passed, the sample is in an exotic state where all of the aluminium atoms have an L-shell hole, and the valence band has approximately a 9 eV temperature, whereas the atoms are still on their crystallographic positions. Subsequently, Auger decay heats the material to the warm dense matter regime, at around 25 eV temperatures. The method is an ideal candidate to study homogeneous warm dense matter, highly relevant to planetary science, astrophysics and inertial confinement fusion.
Resumo:
Context. Complex molecules such as ethanol and dimethyl ether have been observed in a number of hot molecular cores and hot corinos. Attempts to model the molecular formation process using gas phase only models have so far been unsuccessful. Aims. To demonstrate that grain surface processing is a viable mechanism for complex molecule formation in these environments. Methods. A variable environment parameter computer model has been constructed which includes both gas and surface chemistry. This is used to investigate a variety of cloud collapse scenarios. Results. Comparison between model results and observation shows that by combining grain surface processing with gas phase chemistry complex molecules can be produced in observed abundances in a number of core and corino scenarios. Differences in abundances are due to the initial atomic and molecular composition of the core/corino and varying collapse timescales. Conclusions. Grain surface processing, combined with variation of physical conditions, can be regarded as a viable method for the formation of complex molecules in the environment found in the vicinity of a hot core/corino and produce abundances comparable to those observed.
Resumo:
Context. Considerable demand exists for electron excitation data for Ni ii, since lines from this abundant ion are observed in a wide variety of laboratory and astrophysical spectra. The accurate theoretical determination of these data can present a significant challenge however, due to complications arising from the presence of an open 3d-shell in the description of the target ion. Aims. In this work we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact ex- citation of Ni ii. Attention is concentrated on the 153 forbidden fine-structure transitions between the energetically lowest 18 levels of Ni ii. Effective collision strengths have been evaluated at 27 individual electron temperatures ranging from 30–100 000 K. To our knowledge this is the most extensive theoretical collisional study carried out on this ion to date.Methods. The parallel R-matrix package RMATRX II has recently been extended to allow for the inclusion of relativistic effects. This suite of codes has been utilised in the present work in conjunction with PSTGF to evaluate collision strengths and effective collision strengths for all of the low-lying forbidden fine-structure transitions. The following basis configurations were included in the target model – 3d9 , 3d8 4s, 3d8 4p, 3d7 4s2 and 3d7 4s4p – giving rise to a sophisticated 295 j j-level, 1930 coupled channel scattering problem. Results. Comprehensive comparisons are made between the present collisional data and those obtained from earlier theoretical evaluations. While the effective collision strengths agree well for some transitions, significant discrepancies exist for others.
Resumo:
Context. Absorption or emission lines of Cr II are observed in a wide variety of astrophysical spectra and accurate atomic data are urgently needed to interpret these lines. Many of these data are impossible to measure experimentally and a full theoretical treatment is the only means by which these data can be obtained.
Aims. In this paper, we present collision strengths and effective collision strengths for electron-impact excitation of Cr II for forbidden transitions among the lowest-lying 74 fine-structure levels. Effective collision strengths have been computed for 18 individual electron temperatures of astrophysical importance, ranging from 2000-100 000 K.
Methods. The parallel suite of R-matrix packages, RMATRX II, which has recently been extended to allow for the inclusion of relativistic effects, has been used in the present work to compute the collision strengths and effective collision strengths for electron-impact excitation of Cr II. We concentrate in this publication on low-lying forbidden lines among the lowest 74 jj fine-structure levels with configurations 3d(5) and 3d(4)4s, although atomic data has been evaluated for all 39 060 transitions among the 280 jj levels of configurations 3d(5), 3d(4)4s and 3d(4)4p. This work constitutes the largest evaluation ever performed for this ion involving 1932 coupled channels.
Results. Collision and effective collision strengths are presented for all transitions among the lowest 74 J pi states of Cr II and comparisons made with the work of Bautista et al. (2009). While the effective collision strengths agree well for some transitions, significant discrepancies exist for others. We believe that the present atomic data represents the most accurate, most sophisticated and most complete data set for electron-impact excitation of Cr II and we would recommend them to astrophysicists and plasma physicists in their application work. We would expect that the effective collision strengths presented for the important low-lying forbidden lines are accurate to within 15%.
Resumo:
High-resolution optical spectra of 57 Galactic B-type supergiant stars have been analysed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulent velocity) and surface nitrogen abundances have been estimated using a non-local thermodynamic equilibrium grid of model atmospheres. Comparisons of the projected rotational velocities have been made with the predictions of stellar evolutionary models and in general good agreement was found. However, for a small number of targets, their observed rotational velocities were significantly larger than predicted, although their nitrogen abundances were consistent with the rest of the sample. We conclude that binarity may have played a role in generating their large rotational velocities. No correlation was found between nitrogen abundances and the current projected rotational velocities. However, a correlation was found with the inferred projected rotational velocities of the main-sequence precursors of our supergiant sample. This correlation is again in agreement with the predictions of single star evolutionary models that incorporate rotational mixing. The origin of the macroturbulence and microturbulent velocity fields is discussed and our results support previous theoretical studies that link the former to subphotospheric convection and the latter to non-radial gravity mode oscillations. In addition, we have attempted to identify differential rotation in our most rapidly rotating targets.
Resumo:
Aims. A magneto-hydrostatic model is constructed with spectropolarimetric properties close to those of solar photospheric magnetic bright points.
Methods. Results of solar radiative magneto-convection simulations are used to produce the spatial structure of the vertical component of the magnetic field. The horizontal component of magnetic field is reconstructed using the self-similarity condition, while the magneto-hydrostatic equilibrium condition is applied to the standard photospheric model with the magnetic field embedded. Partial ionisation processes are found to be necessary for reconstructing the correct temperature structure of the model.
Results. The structures obtained are in good agreement with observational data. By combining the realistic structure of the magnetic field with the temperature structure of the quiet solar photosphere, the continuum formation level above the equipartition layer can be found. Preliminary results are shown of wave propagation through this magnetic structure. The observational consequences of the oscillations are examined in continuum intensity and in the Fe I 6302 angstrom magnetically sensitive line.