174 resultados para Artificial antibody
Resumo:
Titanium alloy exhibits an excellent combination of bio-compatibility, corrosion resistance, strength and toughness. The microstructure of an alloy influences the properties. The microstructures depend mainly on alloying elements, method of production, mechanical, and thermal treatments. The relationships between these variables and final properties of the alloy are complex, non-linear in nature, which is the biggest hurdle in developing proper correlations between them by conventional methods. So, we developed artificial neural networks (ANN) models for solving these complex phenomena in titanium alloys.
In the present work, ANN models were used for the analysis and prediction of the correlation between the process parameters, the alloying elements, microstructural features, beta transus temperature and mechanical properties in titanium alloys. Sensitivity analysis of trained neural network models were studied which resulted a better understanding of relationships between inputs and outputs. The model predictions and the analysis are well in agreement with the experimental results. The simulation results show that the average output-prediction error by models are less than 5% of the prediction range in more than 95% of the cases, which is quite acceptable for all metallurgical purposes.
Resumo:
Being a new generation of green solvents and high-tech reaction media of the future, ionic liquids have increasingly attracted much attention. Of particular interest in this context are room temperature ionic liquids (in short as ILs in this paper). Due to the relatively high viscosity, ILs is expected to be used in the form of solvent diluted mixture with reduced viscosity in industrial application, where predicting the viscosity of IL mixture has been an important research issue. Different IL mixture and many modelling approaches have been investigated. The objective of this study is to provide an alternative model approach using soft computing technique, i.e., artificial neural network (ANN) model, to predict the compositional viscosity of binary mixtures of ILs [C n-mim][NTf 2] with n=4, 6, 8, 10 in methanol and ethanol over the entire range of molar fraction at a broad range of temperatures from T=293.0-328.0K. The results show that the proposed ANN model provides alternative way to predict compositional viscosity successfully with highly improved accuracy and also show its potential to be extensively utilized to predict compositional viscosity taking account of IL alkyl chain length, as well as temperature and compositions simultaneously, i.e., more complex intermolecular interactions between components in which it would be hard or impossible to establish the analytical model. This illustrates the potential application of ANN in the case that the physical and thermodynamic properties are highly non-linear or too complex. © 2012 Copyright the authors.
Resumo:
The objective of this study is to provide an alternative model approach, i.e., artificial neural network (ANN) model, to predict the compositional viscosity of binary mixtures of room temperature ionic liquids (in short as ILs) [C n-mim] [NTf 2] with n=4, 6, 8, 10 in methanol and ethanol over the entire range of molar fraction at a broad range of temperatures from T=293.0328.0K. The results show that the proposed ANN model provides alternative way to predict compositional viscosity successfully with highly improved accuracy and also show its potential to be extensively utilized to predict compositional viscosity over a wide range of temperatures and more complex viscosity compositions, i.e., more complex intermolecular interactions between components in which it would be hard or impossible to establish the analytical model. © 2010 IEEE.
Resumo:
Bridge construction responds to the need for environmentally friendly design of motorways and facilitates the passage through sensitive natural areas and the bypassing of urban areas. However, according to numerous research studies, bridge construction presents substantial budget overruns. Therefore, it is necessary early in the planning process for the decision makers to have reliable estimates of the final cost based on previously constructed projects. At the same time, the current European financial crisis reduces the available capital for investments and financial institutions are even less willing to finance transportation infrastructure. Consequently, it is even more necessary today to estimate the budget of high-cost construction projects -such as road bridges- with reasonable accuracy, in order for the state funds to be invested with lower risk and the projects to be designed with the highest possible efficiency. In this paper, a Bill-of-Quantities (BoQ) estimation tool for road bridges is developed in order to support the decisions made at the preliminary planning and design stages of highways. Specifically, a Feed-Forward Artificial Neural Network (ANN) with a hidden layer of 10 neurons is trained to predict the superstructure material quantities (concrete, pre-stressed steel and reinforcing steel) using the width of the deck, the adjusted length of span or cantilever and the type of the bridge as input variables. The training dataset includes actual data from 68 recently constructed concrete motorway bridges in Greece. According to the relevant metrics, the developed model captures very well the complex interrelations in the dataset and demonstrates strong generalisation capability. Furthermore, it outperforms the linear regression models developed for the same dataset. Therefore, the proposed cost estimation model stands as a useful and reliable tool for the construction industry as it enables planners to reach informed decisions for technical and economic planning of concrete bridge projects from their early implementation stages.
Resumo:
The generation of novel Mycobacterium avium subsp. paratuberculosis (MAP)-specific monoclonal antibodies and phage-display derived peptide binders, along with their application for the magnetic separation (MS) of MAP cells, is described. Our aim was to achieve even greater MAP capture capability than is possible with peptide-mediated magnetic separation (PMS) using a 50:50 mix of biotinylated-aMp3 and biotinylated-aMptD peptide-coated beads. Gamma-irradiated whole MAP cells and ethanol extracted antigens (EEA) from these cells were used to elicit an immune response and as phage-display biopanning targets. A range of novel binders was obtained and coated onto paramagnetic beads, both individually and in various combinations, for MS evaluation. IS900 PCR was employed after MS to provide quick results. Capture sensitivity was assessed using a range of MAP concentrations after which the most promising beads were tested for their specificity for MAP, by performing MS followed by culture using 10 other Mycobacterium species. Magnetic beads coated with the biotinylated EEA402 peptide demonstrated a greater level of MAP capture than the current PMS method, even when low numbers of MAP (<10 cfu/ml) were present; however these beads also captured a range of other mycobacteria and so lacked capture specificity. Magnetic beads coated with monoclonal antibodies 6G11 and 15D10 (used as a 50:50 mix or as dually coated beads) also demonstrated improved MAP capture relative to the current PMS method, but with little cross-reactivity to other Mycobacterium spp. Therefore, two new MS protocols are suggested, the application of which would be dependent upon the required endpoint. Biotinylated EEA402-coated beads could potentially be used with a MAP-specific PCR to ensure detection specificity, while beads coated with 6G11 and 15D10 monoclonal antibodies could be used with culture or the phage amplification assay.