200 resultados para ANTHELMINTIC RESISTANT NEMATODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite significant advances in treatment strategies targeting the underlying defect in cystic fibrosis (CF), airway infection remains an important cause of lung disease. In this two-part series, we review recent evidence related to the complexity of CF airway infection, explore data suggesting the relevance of individual microbial species, and discuss current and future treatment options. In Part I, the evidence with respect to the spectrum of bacteria present in the CF airway, known as the lung microbiome is discussed. Subsequently, the current approach to treat methicillin-resistant Staphylococcus aureus, gram-negative bacteria, as well as multiple coinfections is reviewed. Newer molecular techniques have demonstrated that the airway microbiome consists of a large number of microbes, and the balance between microbes, rather than the mere presence of a single species, may be relevant for disease pathophysiology. A better understanding of this complex environment could help define optimal treatment regimens that target pathogens without affecting others. Although relevance of these organisms is unclear, the pathologic consequences of methicillin-resistant S. aureus infection in patients with CF have been recently determined. New strategies for eradication and treatment of both acute and chronic infections are discussed. Pseudomonas aeruginosa plays a prominent role in CF lung disease, butmany other nonfermenting gram-negative bacteria are also found in the CF airway. Many new inhaled antibiotics specifically targeting P. aeruginosa have become available with the hope that they will improve the quality of life for patients. Part I concludes with a discussion of how best to treat patients with multiple coinfections.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural evolution during short-term (up to 3000 hours) thermal exposure of three 9/12Cr heat-resistant steels was studied, as well as the mechanical properties after exposure. The tempered martensitic lath structure, as well as the precipitation of carbide and MX type carbonitrides in the steel matrix, was stable after 3000 hours of exposure at 873 K (600 °C). A microstructure observation showed that during the short-term thermal exposure process, the change of mechanical properties was caused mainly by the formation and growth of Laves-phase precipitates in the steels. On thermal exposure, with an increase of cobalt and tungsten contents, cobalt could promote the segregation of tungsten along the martensite lath to form Laves phase, and a large size and high density of Laves-phase precipitates along the grain boundaries could lead to the brittle intergranular fracture of the steels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nitride-strengthened martensitic heat resistant steel is precipitation strengthened only by nitrides. In the present work, the effect of nitride precipitation behavior on the impact toughness of an experimental steel was investigated. Nitrides could hardly be observed when the steel was tempered at 650°C. When the tempering temperature was increased to 700°C and 750°C, a large amount of nitrides were observed in the matrix. It was surprising to reveal that the impact energy of the half-size samples greatly increased from several Joules to nearly a hundred Joules. The ductile-brittle transition temperature (DBTT) was also discovered to decrease from room temperature to −50°C when the tempering temperature was increased from 650°C to 750°C. The nitride precipitation with increasing tempering temperature was revealed to be responsible for the improved impact toughness.

Relevância:

20.00% 20.00%

Publicador: