356 resultados para 0205 Optical Physics


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper derives a general procedure for the numerical solution of the Lindblad equations that govern the coherences arising from multicoloured light interacting with a multilevel system. A systematic approach to finding the conservative and dissipative terms is derived and applied to the laser cooling of p-block elements. An improved numerical method is developed to solve the time-dependent master equation and results are presented for transient cooling processes. The method is significantly more robust, efficient and accurate than the standard method and can be applied to a broad range of atomic and molecular systems. Radiation pressure forces and the formation of dynamic dark states are studied in the gallium isotope 66Ga.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gamma-ray positron annihilation spectra of the noble gases are simulated using computational chemistry tools for the bound electron wavefunctions and plane-wave approximation for the low-energy positron. The present annihilation line shapes, i.e. the full width at half maximum, Delta epsilon, of the gamma-ray annihilation spectra for He and Ar (valence) agree well with available independent atomic calculations using a different algorithm. For other noble gases they achieve moderate agreement with the experimental measurements. It is found that the contributions of various atomic electron shells to the spectra depend significantly on their principal quantum number n and orbital angular momentum quantum number l. The present study further reveals that the outermost ns electrons of the noble gases exhibit spectral line shapes in close agreement with those measured, indicating (as expected) that the measurements are not due to a simple sum over the momentum densities for all atomic electrons. The robust nature of the present approach makes it possible for us to proceed to more complex molecular systems using the tools of modern computational chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the process of low-energy electron capture by the SF(6) molecule. Our approach is based on the model of Gauyacq and Herzenberg [J. P. Gauyacq and A. Herzenberg, J. Phys. B 17, 1155 (1984)] in which the electron motion is coupled to the fully symmetric vibrational mode through a weakly bound or virtual s state. By tuning the two free parameters of the model, we achieve an accurate description of the measured electron attachment cross section and good agreement with vibrational excitation cross sections of the fully symmetric mode. An extension of the model provides a limit on the characteristic time of intramolecular vibrational relaxation in highly excited SF(6)(-). By evaluating the total vibrational spectrum density of SF(6)(-), we estimate the widths of the vibrational Feshbach resonances of the long-lived negative ion. We also analyze the possible distribution of the widths and its effect on the lifetime measurements, and investigate nonexponential decay features in metastable SF(6)(-).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A many-body theory approach to the calculation of gamma spectra of positron annihilation on many-electron atoms is developed. We evaluate the first-order correlation correction to the annihilation vertex and perform numerical calculations for the noble gas atoms. Extrapolation with respect to the maximal orbital momentum of the intermediate electron and positron states is used to achieve convergence. The inclusion of correlation corrections improves agreement with experimental gamma spectra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The correlated process of photodetaching two electrons from the F- ion following the absorption of a single photon has been investigated over an energy range 20-62 eV. In the experiment, a beam of photons from the Advanced Light Source was collinearly merged with a counter-propagating beam of F- ions from a sputter ion source. The F+ ions produced in the interaction region were detected, and the normalized signal was used to monitor the relative cross section for the double-detachment reaction. An absolute scale for the cross section was established by measuring the spatial overlap of the two beams and by determining the efficiency for collection and detection of the F+ ions. The measured cross section is compared with R-matrix and random phase approximation calculations. These calculations show that the Auger decay of the 2s2p(6) core-excited state of the F atom plays a minor role in the production of F+ ions and that double detachment is likely to be dominated by simultaneous correlated ejection of two valence electrons at energies well above threshold.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been suggested (Gribakin et al 1999 Aust. J. Phys. 52 443–57, Flambaum et al 2002 Phys. Rev. A 66 012713) that strongly enhanced low-energy electron recombination observed in Au25+ (Hoffknecht et al 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2415–28) is mediated by complex multiply excited states, while simple dielectronic excitations play the role of doorway states for the electron capture process. We present the results of an extensive study of con?guration mixing between doubly excited (doorway) states and multiply excited states which account for the large electron recombination rate on Au25+ . A detailed analysis of spectral statistics and statistics of eigenstate components shows that the dielectronic doorway states are virtually ‘dissolved’ in complicated chaotic multiply excited eigenstates. This work provides a justi?cation for the use of statistical theory to calculate the recombination rates of Au25+ and similar complex multiply charged ions. We also investigate approaches which allow one to study complex chaotic many-body eigenstates and criteria of strong con?guration mixing, without diagonalizing large Hamiltonian matrices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use many-body theory to find the asymptotic behaviour of second-order correlation corrections to the energies and positron annihilation rates in many- electron systems with respect to the angular momenta l of the single-particle orbitals included. The energy corrections decrease as 1/(l+1/2)4, in agreement with the result of Schwartz, whereas the positron annihilation rate has a slower 1/(l+1/2)2 convergence rate. We illustrate these results by numerical calculations of the energies of Ne and Kr and by examining results from extensive con?guration-interaction calculations of PsH binding and annihilation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Absolute three-photon detachment cross sections are calculated for the fluorine negative ion within the lowest-order perturbation theory. The Dyson equation of the atomic many-body theory is used to obtain the ground-state 2p wavefunction with correct asymptotic behaviour, corresponding to the true (experimental) binding energy. We show that in accordance with the adiabatic theory this is crucial for obtaining absolute values of the multiphoton cross sections. Comparisons with other calculations and experimental data are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present high-accuracy calculations of ionization rates of helium at UV (195 nm) wavelengths. The data are obtained from full-dimensionality integrations of the helium-laser time-dependent Schrödinger equation. Comparison is made with our previously obtained data at 390 nm and 780 nm. We show that scaling laws introduced by Parker et al extend unmodified from the near-infrared limit into the UV limit. Static-field ionization rates of helium are also obtained, again from time-dependent full-dimensionality integrations of the helium Schrödinger equation. We compare the static-field ionization results with those of Scrinzi et al and Themelis et al, who also treat the full-dimensional helium atom, but with time-independent methods. Good agreement is obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the properties of the lifetime or the time-delay matrix Q(E) for multichannel scattering, which is related to the scattering matrix S(E) by Q = i?S(dS†/dE). For two overlapping resonances occurring at energies E with widths G(? = 1, 2), with an energy-independent background, only two eigenvalues of Q(E) are proved to be different from zero and to show typical avoided-crossing behaviour. These eigenvalues are expressible in terms of the four resonance parameters (E , G) and a parameter representing the strength of the interaction of the resonances. An example of the strong and weak interaction in an overlapping double resonance is presented for the positronium negative ion. When more than two resonances overlap (? = 1, ..., N), no simple representation of each eigenvalue has been found. However, the formula for the trace of the Q-matrix leads to the expression d(E) = -?arctan[(G/2)/(E - E)] + d(E) for the eigenphase sum d(E) and the background eigenphase sum d(E), in agreement with the known form of the state density. The formulae presented in this paper are useful in a parameter fitting of overlapping resonances. © 2006 IOP Publishing Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Above a critical velocity, the dominant mechanism of energy transfer between a moving object and a dilute Bose-Einstein condensate is vortex formation. In this paper, we discuss the critical velocity for vortex formation and the link between vortex shedding and drag in both homogeneous and inhomogeneous condensates. We find that at supersonic velocities sound radiation also contributes significantly to the drag force.