154 resultados para research impact
Resumo:
Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe$^{2+}$ which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This is in contradiction to the finding of Bautista et al. [Ap.J.Lett, 718, L189, (2010)] who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.
Resumo:
In this study we calculate the electron-impact uncertainties in atomic data for direct ionization and recombination and investigate the role of these uncertainties on spectral diagnostics. We outline a systematic approach to assigning meaningful uncertainties that vary with electron temperature. Once these uncertainty parameters have been evaluated, we can then calculate the uncertainties on key diagnostics through a Monte Carlo routine, using the Astrophysical Emission Code (APEC) [Smith et al. 2001]. We incorporate these uncertainties into well known temperature diagnostics, such as the Lyman alpha versus resonance line ratio and the G ratio. We compare these calculations to a study performed by [Testa et al. 2004], where significant discrepancies in the two diagnostic ratios were observed. We conclude that while the atomic physics uncertainties play a noticeable role in the discrepancies observed by Testa, they do not explain all of them. This indicates that there is another physical process occurring in the system that is not being taken into account. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.
Resumo:
Electron-impact ionization cross sections are calculated for the ground and metastable states of B+. Com- parisons between perturbative distorted-wave and nonperturbative close-coupling calculations find reductions in the direct ionization cross sections due to long-range electron correlation effects of approximately 10% for the ground state and approximately 15% for the metastable state. Previous crossed-beams experiments, with a metastable to ground ratio of between 50% and 90%, are found to be in reasonable agreement with metastable state close-coupling results. New crossed-beams experiments, with a metastable to ground ratio of only 9%, are found to be in reasonable agreement with ground state close-coupling results. Combined with previous work on neutral B and B2+, the nonperturbative close-coupling calculations provide accurate ionization cross sections for the study of edge plasmas in controlled fusion research.