158 resultados para reo virus
Resumo:
Human T lymphotrophic virus type 1 (HTLV-I) associated leukaemia has a poor prognosis even with chemotherapy. We describe a patient with adult T-cell leukaemia treated with allogeneic bone marrow transplantation from an HTLV-I negative identical sibling donor. During follow-up after bone marrow transplantation, HTLV-I could be repeatedly isolated inspite of anti-viral prophylaxis. The patient died of an acute encephalitis and HTLV-I could be detected in autopsy material from the brain. By a PCR-based technique using short tandem repeats (STRs) it was shown that the patient's haemopoiesis was of donor origin. This shows the infection of donor cells in vivo by an aetiological agent which has been implicated in the leukaemogenic process for adult T-cell leukaemia.
Resumo:
Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV) several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question, and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. Additionally, endo-lysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable over-expression of p62 significantly suppressed DENV replication suggesting a novel role for p62 as viral restriction factor. Overall our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an anti-viral role, which is countered by DENV.
IMPORTANCE: Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the replication cycle of many viruses. However, thus far the dynamics of autophagy in case of Dengue virus (DENV) infections has not been systematically quantified. Therefore, we employed high-content, imaging-based flow cytometry to quantify autophagic flux and endo-lysosomal trafficking in response to DENV infection. We report that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Further, lysosomal activity was increased, but endo-lysosomal trafficking was suppressed confirming the block of autophagic flux. Importantly, we provide evidence that p62, an autophagy receptor, restrict DENV replication and was specifically depleted in DENV-infected cells via increased proteasomal degradation. These results suggest that during DENV infection autophagy shifts from a pro- to an antiviral cellular process, which is counteracted by the virus.
Resumo:
Airway epithelium is the primary target of many respiratory viruses. However, virus induction and antagonism of host responses by human airway epithelium remains poorly understood. To address this, we developed a model of respiratory syncytial virus (RSV) infection based on well- differentiated pediatric primary bronchial epithelial cell cultures (WD-PBECs) that mimics hallmarks of RSV disease in infants. RSV is the most important respiratory viral pathogen in young infants worldwide. We found that RSV induces a potent antiviral state in WD-PBECs that was mediated in part by secreted factors, including interferon lambda-1 (IFNλ1)/IL-29. In contrast, type I interferons were not detected following RSV infection of WD-PBECs., Interferon (IFN) responses in RSV-infected WD-PBECs reflected those in lower airway samples from RSV-hospitalized infants. In view of the prominence of IL-29, we determined whether recombinant IL-29 treatment of WD-PBECs before or after infection abrogated RSV replication. Interestingly, IL-29 demonstrated prophylactic, but not therapeutic, potential against RSV. The absence of therapeutic potential reflected effective RSV antagonism of IFN-mediated antiviral responses in infected cells. Our data are consistent with RSV non-structural proteins 1 and/or 2 perturbing the Jak-STAT signaling pathway, with concomitant reduced expression of antiviral effector molecules, such as MxA/B. Antagonism of Jak-STAT signaling was restricted to RSV-infected cells in WD-PBEC cultures. Importantly, our study provides the rationale to further explore IL-29 as a novel RSV prophylactic.
Resumo:
Respiratory Syncytial Virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanised monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease. ALX-0171 is a trimeric Nanobody that binds the antigenic site II of RSV F-protein with subnanomolar affinity. ALX-0171 demonstrated superior in vitro neutralisation compared to palivizumab against prototypic RSV A and B strains. Moreover, ALX-0171 completely blocked replication below limit of detection in 87% of the viruses tested versus 18% for palivizumab at a fixed concentration. Importantly, ALX-0171 was highly effective in reducing both nasal and lung RSV titers when delivered prophylactically or therapeutically directly to the lungs of cotton rats. ALX-0171 represents a potent novel antiviral compound with significant potential to treat RSV-mediated disease.
Resumo:
Information and collated statistical analysis on the decline of red squirrels.
Resumo:
BACKGROUND: RSV causes considerable morbidity and mortality in children. In cystic fibrosis (CF) viral infections are associated with worsening respiratory symptoms and bacterial colonization. Palivizumab is effective in reducing RSV hospitalization in high risk patient groups. Evidence regarding its effectiveness and safety in CF is inconclusive. CF screening in N. Ireland enabled timely palivizumab prophylaxis, becoming routine in 2002.
OBJECTIVES: To determine the effect of palivizumab on RSV-related hospitalization and compare lung function and bacterial colonization at age 6 years for those born pre- and post-introduction of palivizumab prophylaxis.
METHODS: A retrospective audit was conducted for all patients diagnosed with CF during the period from 1997 to 2007 inclusive. RSV-related hospitalization, time to Pseudomonas aeruginosa (PA) 1st isolate, lung function and growth parameters were recorded. Comparisons were made for outcomes pre- and post-introduction of routine palivizumab administration in 2002. A cost evaluation was also performed.
RESULTS: Ninety-two children were included; 47 pre- and 45 post-palivizumab introduction. The overall RSV-positive hospitalization rate was 13%. The relative risk of RSV infection in palivizumab non-recipients versus recipients was 4.78 (95%CI: 1.1-20.7), P = 0.027. Notably, PA 1st isolate was significantly earlier in the palivizumab recipient cohort versus non-recipient cohort (median 57 vs. 96 months, P < 0.025) with a relative risk of 2.5. Chronic PA infection at 6 years remained low in both groups, with similar lung function and growth parameters. Total costs were calculated at £96,127 ($151,880) for the non-recipient cohort versus £137,954 ($217,967) for the recipient cohort.
CONCLUSION: Palivizumab was effective in reducing RSV-related hospitalization infection in CF patients. Surprisingly, we found a significantly earlier time to 1st isolate of PA in palivizumab recipients which we could not explain by altered or improved diagnostic tests.