174 resultados para physics.plasm-ph


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication and electrical characterization of Schottky junction diodes have been extensively researched for three-quarters of a century since the original work of Schottky in 1938. This study breaks from the highly standardized regime of such research and provides an alternative methodology that prompts novel, more efficient applications of the adroit Schottky junction in areas such as chemical and thermal sensing. The core departure from standard Schottky diode configuration is that the metal electrode is of comparable or higher resistance than the underlying semiconductor. Further, complete electrical characterization is accomplished through recording four-probe resistance-temperature (R-D-T) characteristics of the device, where electrical sourcing and sensing is done only via the metal electrode and not directly through the semiconductor. Importantly, this results in probing a nominally unbiased junction while eliminating the need for an Ohmic contact to the semiconductor. The characteristic R-D-T plot shows two distinct regions of high (metal) and low (semiconductor) resistances at low and high temperatures, respectively, connected by a crossover region of width, DT, within which there is a large negative temperature coefficient of resistance. The R-D-T characteristic is highly sensitive to the Schottky barrier height; consequently, at a fixed temperature, R-D responds appreciably to small changes in barrier height such as that induced by absorption of a chemical species (e.g., H-2) at the interface. A theoretical model is developed to simulate the R-D-T data and applied to Pd/p-Si and Pt/p-Si Schottky diodes with a range of metal electrode resistance. The analysis gives near-perfect fits to the experimental R-D-T characteristics, yielding the junction properties as fit parameters. The modelling not only helps elucidate the underlying physics but also helps to comprehend the parameter space essential for the discussed applications. Although the primary regime of application is limited to a relatively narrow range (DT) for a given type of diode, the alternative methodology is of universal applicability to all metal-semiconductor combinations forming Schottky contacts. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We undertake a thorough analysis of the thermodynamics of the trajectories followed by a quantum harmonic oscillator coupled to $N$ dissipative baths by using a new approach to large-deviation theory inspired by phase-space quantum optics. As an illustrative example, we study the archetypal case of a harmonic oscillator coupled to two thermal baths, allowing for a comparison with the analogous classical result. In the low-temperature limit, we find a significant quantum suppression in the rate of work exchanged between the system and each bath. We further show how the presented method is capable of giving analytical results even for the case of a driven harmonic oscillator. Based on that result, we analyse the laser cooling of the motion of a trapped ion or optomechanical system, illustrating how the emission statistics can be controllably altered by the driving force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1–3, which contain a fluorophore and two proton receptors with opposite PET (photoinduced electron transfer) characteristics, only display strong fluorescence within a pH window whose position and width are tunable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-(aminoalkyl)-4-chloronaphthalene-
1,8-dicarboximides 1, N-
(aminoalkyl)-4-acetamidonaphthalene-
1,8-dicarboximides 3 and N,N'-bis(aminoalkyl)-
perylene-3,4:9,10-tetracarboxydiimides
4 show good fluorescent off ±
on switching in aqueous alcoholic solution
with protons as required for fluorescent
PET sensor design. The excitation
wavelengths lie in the ultraviolet
(lmaxˆ345 and 351 nm) for 1 and 3 and
in the blue-green (lmaxˆ528, 492 and
461 nm) for 4; the emission wavelengths
lie in the violet (lmaxˆ408 nm) for 1, in
the blue (lmaxˆ474 nm) for 3 and in the
yellow-orange (lmaxˆ543 and 583 nm)
for 4. Compound 4b shows substantial
fluorescence enhancement with protons
when immobilized in a poly(vinylchloride)
matrix, provided that 2-nitrophenyloctyl
ether plasticizer and potassium
tetrakis(4-chlorophenyl)borate additive
are present to prevent dye crystallization
and to facilitate proton diffusion
into the membrane, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3 - challenge and to quantify transport activity. The NO3 --associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3 --free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 μM NO3 -. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity mensurable approx. 100 min after first exposure to NO3 -; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3 - additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 μM NO3 -; and it was suppressed when NH4 +, was present during the first, inductive exposure to NO3 -. Voltage clamp measurements carried out immediately before and following NO3 - additions showed that the NO3 --evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages -400 to +100 mV). Measurements of NO3 - uptake using NO3 --selective macroelectrodes indicated a charge stoichiometry for NO3 - transport of 1(+):1(NO3 -) with common K(m) and J(max) values around 25 μM and 75 pmol NO3 - cm-2sec-1, respectively, and combined measurements of pH(o) and [NO3 -](o) showed a net uptake of approx. 1 H+ with each NO3 - anion. Analysis of the NO3 - current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pH(o) and [NO3 -](o). Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pH(o) of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3 -. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+](o). These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO anion transported across the membrane, and implicate a carrier cycle in which NO binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3 - transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3 - transport; finally, they distinguish metabolite repression of NO3 - transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perennial rye-grass plants were grown at 15°C in microcosms containing soil sampled from field plots that had been maintained at constant pH for the last 30 years. Six soil pH values were tested in the experiment, with pH ranging from 4.3-6.5. After 3 weeks growth in the microcosms, plant shoots were exposed to a pulse of 14C-CO2. The fate of this label was determined by monitoring 14C-CO2 respired by the plant roots/soil and by the shoots. The 14C remaining in plant roots and shoots was determined when the plants were harvested 7 days after receiving the pulse label. The amount of 14C (expressed as a percentage of the total 14C fixed by the plant) lost from the plant roots increased from 12.3 to 30.6% with increasing soil pH from 4.3 to 6. Although a greater percentage of the fixed 14C was respired by the root/soil as soil pH increased, plant biomass was greater with increasing soil pH. Possible reasons for observed changes in the pattern of 14C distribution are discussed and, it is suggested that changes in the soil microbial biomass and in plant nitrogen nutrition may, in particular be key factors which led to increased loss of carbon from plant roots with increasing soil pH. © 1990 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Terawatt Apparatus for Relativistic And Non-linear Interdisciplinary Science (TARANIS), installed in the Centre for Plasma Physics at the Queen's University Belfast, supports a wide ranging science program, including laser-driven particle acceleration, X-ray lasers and high energy density physics experiments. We present (1) an overview of the laser facility, (2) results of preliminary investigations on proton acceleration, laser action at 13.9 nm and Kα sources and (3) speculation on future experiments using these extreme sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a single centre experience of eight consecutive patients with relapsed or refractory Ph+ ALL treated with the FLAG/idarubicin regimen followed by BMT or PBSCT. Following FLAG/idarubicin, one achieved a partial response and seven CR. All patients subsequently received allogeneic transplants: one sibling BMT, three matched unrelated (MUD) BMT and four sibling PBSCT. Two patients received second transplants with PBSC from their original BM donors following FLA/Ida with no further conditioning. Three patients are alive in CR 9, 24 and 32 months after transplant. Seven of eight patients had a cytogenetic response following FLAG/Ida induction and one of seven became bcr-abl negative. All eight patients had a complete cytogenetic response following transplant. Four of five assessable patients became p190 bcr-abl negative after transplant; three of these subsequently relapsed. Both patients with the p210 bcr-abl transcript remained bcr-abl positive in CR after transplant. FLAG/Ida was well tolerated and appears to be effective in inducing remission in relapsed Ph+ ALL. The use of FDR-containing chemotherapy without further conditioning prior to PBSCT deserves further study in heavily pre-treated patients and, in patients with relapsed ALL following BMT, may be a safer option than DLI (donor lymphocyte infusion) by avoiding the associated risk of aplasia.