174 resultados para personal communications service networks
Resumo:
This letter proposes several relay selection policies for secure communication in cognitive decode-and-forward (DF) relay networks, where a pair of cognitive relays are opportunistically selected for security protection against eavesdropping. The first relay transmits the secrecy information to the destination,
and the second relay, as a friendly jammer, transmits the jamming signal to confound the eavesdropper. We present new exact closed-form expressions for the secrecy outage probability. Our analysis and simulation results strongly support our conclusion that the proposed relay selection policies can enhance the performance of secure cognitive radio. We also confirm that the error floor phenomenon is created in the absence of jamming.
Resumo:
In this paper, we analyze the performance of cognitive amplify-and-forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi-antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information-assisted AF mode, and the signals undergo independent Nakagami-m fading. In particular, closed-form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami-m fading are presented. More importantly, asymptotic closed-form expressions for the outage probability and SER are derived. These tractable closed-form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network
Resumo:
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multi-antenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the cellular base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, we propose a new power transfer policy, namely, best power beacon (BPB) power transfer. To characterize the power transfer reliability of the proposed policy, we derive new closed-form expressions for the exact power outage probability and the asymptotic power outage probability with large antenna arrays at PBs. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), and 2) nearest receiver selection (NRS). To assess the secrecy performance, we derive new expressions for the secrecy throughput considering the two receiver selection schemes using the BPB power transfer policies. We show that secrecy performance improves with increasing densities of PBs and D2D receivers because of a larger multiuser diversity gain. A pivotal conclusion is reached that BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead.
Resumo:
The next-generation smart grid will rely highly on telecommunications infrastructure for data transfer between various systems. Anywhere we have data transfer in a system is a potential security threat. When we consider the possibility of smart grid data being at the heart of our critical systems infrastructure it is imperative that we do all we can to ensure the confidentiality, availability and integrity of the data. A discussion on security itself is outside the scope of this paper, but if we assume the network to be as secure as possible we must consider what we can do to detect when that security fails, or when the attacks comes from the inside of the network. One way to do this is to setup a hacker-trap, or honeypot. A honeypot is a device or service on a network which appears legitimate, but is in-fact a trap setup to catch breech attempts. This paper identifies the different types of honeypot and describes where each may be used. The authors have setup a test honeypot system which has been live for some time. The test system has been setup to emulate a device on a utility network. The system has had many hits, which are described in detail by the authors. Finally, the authors discuss how larger-scale systems in utilities may benefit from honeypot placement.
Resumo:
The 5G network infrastructure is driven by the evolution of today's most demanding applications. Already, multimedia applications such as on-demand HD video and IPTV require gigabit- per-second throughput and low delay, while future technologies include ultra HDTV and machine-to-machine communication. Mm-Wave technologies such as IEEE 802.15.3c and IEEE 802.11ad are ideal candidates to deliver high throughput to multiple users demanding differentiated QoS. Optimization is often used as a methodology to meet throughput and delay constraints. However, traditional optimization techniques are not suited to a mixed set of multimedia applications. Particle swarm optimization (PSO) is shown as a promising technique in this context. Channel-time allocation PSO (CTA-PSO) is successfully shown here to allocate resource even in scenarios where blockage of the 60 GHz signal poses significant challenges.
Resumo:
The key attributes of a smarter power grid include: pervasive interconnection of smart devices; extensive data generation and collection; and rapid reaction to events across a widely dispersed physical infrastructure. Modern telecommunications technologies are being deployed across power systems to support these monitoring and control capabilities. To enable interoperability, several new communications protocols and standards have been developed over the past 10 to 20 years. These continue to be refined, even as new systems are rolled out.
This new hyper-connected communications infrastructure provides an environment rich in sub-systems and physical devices that are attractive to cyber-attackers. Indeed, as smarter grid operations become dependent on interconnectivity, the communications network itself becomes a target. Consequently, we examine cyber-attacks that specifically target communications, particularly state-of-the-art standards and protocols. We further explore approaches and technologies that aim to protect critical communications networks against intrusions, and to monitor for, and detect, intrusions that infiltrate Smart Grid systems.
Resumo:
Artificial neural network (ANN) methods are used to predict forest characteristics. The data source is the Southeast Alaska (SEAK) Grid Inventory, a ground survey compiled by the USDA Forest Service at several thousand sites. The main objective of this article is to predict characteristics at unsurveyed locations between grid sites. A secondary objective is to evaluate the relative performance of different ANNs. Data from the grid sites are used to train six ANNs: multilayer perceptron, fuzzy ARTMAP, probabilistic, generalized regression, radial basis function, and learning vector quantization. A classification and regression tree method is used for comparison. Topographic variables are used to construct models: latitude and longitude coordinates, elevation, slope, and aspect. The models classify three forest characteristics: crown closure, species land cover, and tree size/structure. Models are constructed using n-fold cross-validation. Predictive accuracy is calculated using a method that accounts for the influence of misclassification as well as measuring correct classifications. The probabilistic and generalized regression networks are found to be the most accurate. The predictions of the ANN models are compared with a classification of the Tongass national forest in southeast Alaska based on the interpretation of satellite imagery and are found to be of similar accuracy.
Resumo:
The papers in this special issue focus on the topic of location awareness for radio and networks. Localization-awareness using radio signals stands to revolutionize the fields of navigation and communication engineering. It can be utilized to great effect in the next generation of cellular networks, mining applications, health-care monitoring, transportation and intelligent highways, multi-robot applications, first responders operations, military applications, factory automation, building and environmental controls, cognitive wireless networks, commercial and social network applications, and smart spaces. A multitude of technologies can be used in location-aware radios and networks, including GNSS, RFID, cellular, UWB, WLAN, Bluetooth, cooperative localization, indoor GPS, device-free localization, IR, Radar, and UHF. The performances of these technologies are measured by their accuracy, precision, complexity, robustness, scalability, and cost. Given the many application scenarios across different disciplines, there is a clear need for a broad, up-to-date and cogent treatment of radio-based location awareness. This special issue aims to provide a comprehensive overview of the state-of-the-art in technology, regulation, and theory. It also presents a holistic view of research challenges and opportunities in the emerging areas of localization.
Resumo:
The number of young people in Europe who are not in education, employment or training (NEET) is increasing. Given that young people from disadvantaged backgrounds tend to have diets of poor nutritional quality, this exploratory study sought to understand barriers and facilitators to healthy eating and dietary health promotion needs of unemployed young people aged 16-20 years. Three focus group discussions were held with young people (n=14). Six individual interviews and one paired interview with service providers (n=7). Data were recorded, transcribed verbatim and thematically content analysed. Themes were then fitted to social cognitive theory (SCT). Despite understanding of the principles of healthy eating, a ‘spiral’ of interrelated social, economic and associated psychological problems was perceived to render food and health of little value and low priority for the young people. The story related by the young people and corroborated by the service providers was of a lack of personal and vicarious experience with food. External, environmental factors such as the proliferation and proximity of fast food outlets and the high perceived cost of ‘healthy’ compared to ‘junk’ food rendered the young people low in self-efficacy and perceived control to make healthier food choices. Agency was instead expressed through consumption of junk food and substance abuse. Both the young people and service providers agreed that for dietary health promotion efforts to succeed, social problems needed addressed and agency encouraged through (individual and collective) active engagement of the young people themselves.
Resumo:
The proposition of increased innovation in network applications and reduced cost for network operators has won over the networking world to the vision of Software-Defined Networking (SDN). With the excitement of holistic visibility across the network and the ability to program network devices, developers have rushed to present a range of new SDN-compliant hardware, software and services. However, amidst this frenzy of activity, one key element has only recently entered the debate: Network Security. In this article, security in SDN is surveyed presenting both the research community and industry advances in this area. The challenges to securing the network from the persistent attacker are discussed and the holistic approach to the security architecture that is required for SDN is described. Future research directions that will be key to providing network security in SDN are identified.
Resumo:
This qualitative study explored disordered eating in a small group of first-year undergraduate students and addresses a gap in the literature by exploring their lived experience.
Aims: To better understand student’s needs in those experiencing or at risk of developing disordered eating during their first year at university and to illustrate what support mechanisms and services are required to better support students experiencing or at risk during their first year at university.
Conclusion: The University could further develop its outreach to new students with a more consistently supportive programme providing better facilities and training for stress appraisal and coping and more support via student buddying. The University could also extend its programme on positive mental health in an attempt to better inform on disordered eating and to reduce a sense of stigma within the student population. Personal tutors and student health care facilities need to be consistently trained in the understanding and person centred approach to students experiencing disordered eating, particularly the sub-clinical group. In addition the University could consider some small changes and adaptations to the refectory eating areas to better facilitate students who may be at risk from disordered eating. Finally the University could perhaps better use the potentially liminal period within the first few months of student's arrival at university (a new beginning) to help embed a program to develop a stronger sense of coherence and well-being.
Resumo:
A new niche of densely populated, unprotected networks is becoming more prevalent in public areas such as Shopping Malls, defined here as independent open-access networks, which have attributes that make attack detection more challenging than in typical enterprise networks. To address these challenges, new detection systems which do not rely on knowledge of internal device state are investigated here. This paper shows that this lack of state information requires an additional metric (The exchange timeout window) for detection of WLAN Denial of Service Probe Flood attacks. Variability in this metric has a significant influence on the ability of a detection system to reliably detect the presence of attacks. A parameter selection method is proposed which is shown to provide reliability and repeatability in attack detection in WLANs. Results obtained from ongoing live trials are presented that demonstrate the importance of accurately estimating probe request and probe response timeouts in future Independent Intrusion Detection Systems.
Resumo:
Active network scanning injects traffic into a network and observes responses to draw conclusions about the network. Passive network analysis works by looking at network meta data or by analyzing traffic as it traverses a fixed point on the network. It may be infeasible or inappropriate to scan critical infrastructure networks. Techniques exist to uniquely map assets without resorting to active scanning. In many cases, it is possible to characterize and identify network nodes by passively analyzing traffic flows. These techniques are considered in particular with respect to their application to power industry critical infrastructure.
Resumo:
Smart Grids are characterized by the application of information communication technology (ICT) to solve electrical energy challenges. Electric power networks span large geographical areas, thus a necessary component of many Smart Grid applications is a wide area network (WAN). For the Smart Grid to be successful, utilities must be confident that the communications infrastructure is secure. This paper describes how a WAN can be deployed using WiMAX radio technology to provide high bandwidth communications to areas not commonly served by utility communications, such as generators embedded in the distribution network. A planning exercise is described, using Northern Ireland as a case study. The suitability of the technology for real-time applications is assessed using experimentally obtained latency data.
Resumo:
This paper discusses a proposed new communications framework for phasor measurement units (PMU) optimized for use on wide area networks. Traditional PMU telecoms have been optimized for use in environments where bandwidth is restricted. The new method takes the reliability of the telecommunications medium into account and provides guaranteed delivery of data whilst optimizing for realtime delivery of the most current data. Other important aspects, such as security, are also considered.