170 resultados para icaA, icaD genes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Bdellovibrio bacteriovorus HD100 must regulate genes in response to a variety of environmental conditions as it enters, preys upon and leaves other bacteria, or grows axenically without prey. In addition to "housekeeping" sigma factors, its genome encodes several alternate sigma factors, including 2 Group IV-RpoE-like proteins, which may be involved in the complex regulation of its predatory lifestyle.

RESULTS: We find that one sigma factor gene, bd3314, cannot be deleted from Bdellovibrio in either predatory or prey-independent growth states, and is therefore possibly essential, likely being an alternate sigma 70. Deletion of one of two Group IV-like sigma factor genes, bd0881, affects flagellar gene regulation and results in less efficient predation, although not due to motility changes; deletion of the second, bd0743, showed that it normally represses chaperone gene expression and intriguingly we find an alternative groES gene is expressed at timepoints in the predatory cycle where intensive protein synthesis at Bdellovibrio septation, prior to prey lysis, will be occurring.

CONCLUSIONS: We have taken the first step in understanding how alternate sigma factors regulate different processes in the predatory lifecycle of Bdellovibrio and discovered that alternate chaperones regulated by one of them are expressed at different stages of the lifecycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Diabetic nephropathy (DN) is a microvascular complication of diabetes. Members of the WNT/ β-catenin pathways have been implicated in interstitial fibrosis and glomerular sclerosis, characteristic hallmarks of DN. These processes are controlled, in part, by transcription factors (TFs), proteins which bind to gene promoter regions attenuating their regulation. We sought to identify predicted cis-acting transcription factor binding sites (TFBS) over-represented within the promoter regions of WNT pathway members compared to genes across the genome.Methods: We assessed the frequency of 62 TFBS motifs from the JASPAR databases on 65 WNT pathway genes. P-values were estimated on the hypergeometric distribution for each TF. Gene expression profiles of enriched motifs were examined from DN-related datasets to assess clinical significance.Results: TFBS motifs transcription factor AP-2 alpha (TFAP2A), myeloid zinc finger 1 (MZF1), and specificity protein 1 (SP1) were significantly enriched within WNT pathway genes (P-values<6.83x10-29, 1.34x10-11 and 3.01x10-6 respectively). MZF1 gene expression was significantly increased in DN in a whole kidney dataset (fold change = 1.16; 16% increase; P = 0.03). TFAP2A gene expression was decreased in an independent dataset (fold change = -1.02; P = 0.03). SP1 was not differentially expressed in any datasets examined.Conclusions: Three TFBS profiles are significantly enriched within the WNT pathway genes examined highlighting the use of in silico analyses for identifying key regulators of this pathway. Modification of TF binding to gene promoter regions involved in DN pathology may limit progression, making refinement of targeted therapeutic strategies possible through clearer delineation of their role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using microarray information from oro-pharyngeal data sets and results from primary human foreskin keratinocytes (HFK) expressing Human Papilloma Virus (HPV)-16 E6/E7 proteins, we show that p63 expression regulates signalling molecules which initiate cell migration such as Src and focal adhesion kinase (FAK) and induce invasion in 3D-organotypic rafts; a phenotype that can be reversed by depletion of p63. Knockdown of Src or FAK in the invasive cells restored focal adhesion protein paxillin at cell periphery and impaired the cell migration. In addition, specific inhibition of FAK (PF573228) or Src (dasatinib) activities mitigated invasion and attenuated the expression/activity of matrix metalloproteinase 14 (MMP14), a pivotal MMP in the MMP activation cascade. Expression of constitutively active Src in non-invasive HFK expressing E6/E7 proteins upregulated the activity of c-Jun and MMP14, and induced invasion in rafts. Depletion of Src, FAK or AKT in the invasive cells normalised the expression/activity of c-Jun and MMP14, thus implicating the Src-FAK/AKT/AP-1 signalling in MMP14-mediated extra-cellular matrix remodelling. Up-regulation of Src, AP-1, MMP14 and p63 expression was confirmed in oro-pharyngeal cancer. Since p63 transcriptionally regulated expression of many of the genes in this signalling pathway, it suggests that it has a central role in cancer progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-typeable Haemophilus influenzae (NTHi) is an opportunist pathogen well adapted to the human upper respiratory tract and responsible for many respiratory diseases. In the human airway, NTHi is exposed to pollutants, such as alkylating agents, that damage its DNA. In this study, we examined the significance of genes involved in the repair of DNA alkylation damage in NTHi virulence. Two knockout mutants, tagI and mfd, encoding N(3)methyladenine-DNA glycosylase I and the key protein involved in transcription-coupled repair, respectively, were constructed and their virulence in a BALB/c mice model was examined. This work shows that N-3-methyladenine-DNA glycosylase I is constitutively expressed in NTHi and that it is relevant for its virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34 + cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript andor exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicingprocessing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expressionsplicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34 + cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processespathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytogenetic analysis in myeloma reveals marked chromosomal instability. Both widespread genomic alterations and evidence of aberrant class switch recombination, the physiological process that regulates maturation of the antibody response, implicate the DNA repair pathway in disease pathogenesis. We therefore assessed 27 SNPs in three genes (XRCC3, XRCC4 and XRCC5) central to DNA repair in patients with myeloma and controls from the EpiLymph study and from an Irish hospital registry (n = 306 cases, 263 controls). For the haplotype-tagging SNP (htSNP) rs963248 in XRCC4, Allele A was significantly more frequent in cases than in controls (86.4 versus 80.8%; odds ratio 1.51; 95% confidence interval 1.10-2.08; P = 0.0133), as was the AA genotype (74 versus 65%) (P = 0.026). Haplotype analysis was performed using Unphased for rs963248 in combination with additional SNPs in XRCC4. The strongest evidence of association came from the A-T haplotype from rs963248-rs2891980 (P = 0.008). For XRCC5, the genotype GG from rs1051685 was detected in 10 cases from different national populations but in only one control (P = 0.015). This SNP is located in the 3'-UTR of XRCC5. Overall, these data provide support for the hypothesis that common variation in the genes encoding DNA repair proteins contributes to susceptibility to myeloma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycosis fungoides (MF) is the most frequent type of cutaneous T-cell lymphoma, whose diagnosis and study is hampered by its morphologic similarity to inflammatory dermatoses (ID) and the low proportion of tumoral cells, which often account for only 5% to 10% of the total tissue cells. cDNA microarray studies using the CNIO OncoChip of 29 MF and 11 ID cases revealed a signature of 27 genes implicated in the tumorigenesis of MF, including tumor necrosis factor receptor (TNFR)-dependent apoptosis regulators, STAT4, CD40L, and other oncogenes and apoptosis inhibitors. Subsequently a 6-gene prediction model was constructed that is capable of distinguishing MF and ID cases with unprecedented accuracy. This model correctly predicted the class of 97% of cases in a blind test validation using 24 MF patients with low clinical stages. Unsupervised hierarchic clustering has revealed 2 major subclasses of MF, one of which tends to include more aggressive-type MF cases including tumoral MF forms. Furthermore, signatures associated with abnormal immunophenotype (11 genes) and tumor stage disease (5 genes) were identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular Medicine and Molecular Pathology are integral parts of Haematology as we enter the new millennium. Their origins can be linked to fundamental developments in the basic sciences, particularly genetics, chemistry and biochemistry. The structure of DNA and the genetic code that it encrypts are the critical starting points to our understanding of these new disciplines. The genetic alphabet is a simple one, consisting of just 4 letters, buts its influence is crucial to human development and differentiation. The concept of a gene is not a new one but the Human Genome Project (a joint world-wide effort to characterise our entire genetic make-up) is providing an invaluable understanding of how genes function in normal cellular processes and pinpointing how disruption of these processes can lead to disease. Transcription and translation are the key events by which our genotype is converted to our phenotype (via a messenger RNA intermediate), producing the myriad proteins and enzymes which populate the cellular factory of our body. Unlike the bacterial or prokaryotic genome, the human genome contains a large amount of non coding DNA (less than 1% of our genome codes for proteins), and our genes are interrupted, with the coding regions or exons separated by non coding introns. Precise removal of the intronic material after transcription (though a process called splicing) is critical for efficient translation to occur. Incorrect splicing can lead to the generation of mutant proteins, which can have a dilaterious effect on the phenotype of the individual. Thus the 100,000-200,000 genes which are present in each cell in our body have a defined control mechanism permitting efficient and appropriate expression of proteins and enzymes and yet a single base change in just one of those genes can lead to diseases such as haemophilia or fanconis anaemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glucocorticoid (GC) receptor (GR) and Kruppel-like factor Klf4 are transcription factors that play major roles in skin homeostasis. However, whether these transcription factors cooperate in binding genomic regulatory regions in epidermal keratinocytes was not known. Here, we show that in dexamethasone-treated keratinocytes GR and Klf4 are recruited to genomic regions containing adjacent GR and KLF binding motifs to control transcription of the anti-inflammatory genes Tsc22d3 and Zfp36. GR- and Klf4 loss of function experiments showed total GR but partial Klf4 requirement for full gene induction in response to dexamethasone. In wild type keratinocytes induced to differentiate, GR and Klf4 protein expression increased concomitant with Tsc22d3 and Zfp36 up-regulation. In contrast, GR-deficient cells failed to differentiate or fully induce Klf4, Tsc22d3 and Zfp36 correlating with increased expression of the epithelium-specific Trp63, a known transcriptional repressor of Klf4. The identified transcriptional cooperation between GR and Klf4 may determine cell-type specific regulation and have implications for developing therapies for skin diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.