188 resultados para head movement
Resumo:
Political support for renewable energy development, especially offshore renewables, is particularly conspicuous in Scotland and is a centrepiece of SNP policy. However, this is built on something of a paradox because, put simply, without the subsidies paid by electricity consumers in the rest of the UK, the Scottish Government's ambitious targets for renewable energy would be politically unachievable. We argue in this paper that if Scotland does move towards independence, then there could be little reason for the UK to continue paying (much) of the subsidies since the resulting renewable generation would no longer contribute towards UK renewable energy targets. We suggest that the potential scenarios, and their implications, needs to be far better considered in the arguments around the Scottish constitutional position and the broader aims of UK energy policy.
Resumo:
In an effort to develop a novel electronic paper image display technology based on the electrowetting principle, a 3-D electrowetting cell is designed and fabricated, which consists of two 3-D bent electrodes, each having a horizontal surface made of gold and a vertical surface made of indium tin oxide (ITO) glass as a color display window, a layer of dielectric material on the 3-D electrodes, and a highly fluorinated hydrophobic layer on the surface of the dielectric layer. Results of this work show that an electrowetting-induced motion of an aqueous droplet in immiscible oils can be achieved reversibly across the boundary of the horizontal and vertical surfaces of the 3-D electrode surface. It is also shown that the droplet can maintain its wetting state on a vertical sidewall electrode free of a power supplier when the voltage is removed. This phenomenon may form the basis for color contrast modulation applications, where a power-free image display is required, such as electronic paper display technology in the future. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3100201]
Resumo:
Background: The association between body size and head and neck cancers (HNCA) is unclear, partly because of the biases in case–control studies. Methods: In the prospective NIH–AARP cohort study, 218,854 participants (132,288 men and 86,566 women), aged 50 to 71 years, were cancer free at baseline (1995 and 1996), and had valid anthropometric data. Cox proportional hazards regression was used to examine the associations between body size and HNCA, adjusted for current and past smoking habits, alcohol intake, education, race, and fruit and vegetable consumption, and reported as HR and 95% confidence intervals (CI). Results: Until December 31, 2006, 779 incident HNCAs occurred: 342 in the oral cavity, 120 in the oro- and hypopharynx, 265 in the larynx, 12 in the nasopharynx, and 40 at overlapping sites. There was an inverse association between HNCA and body mass index, which was almost exclusively among current smokers (HR = 0.76 per each 5 U increase; 95% CI, 0.63–0.93), and diminished as initial years of follow-up were excluded. We observed a direct association with waist-to-hip ratio (HR = 1.16 per 0.1 U increase; 95% CI, 1.03–1.31), particularly for cancers of the oral cavity (HR, 1.40; 95% CI, 1.17–1.67). Height was also directly associated with total HNCAs (P = 0.02), and oro- and hypopharyngeal cancers (P < 0.01). Conclusions: The risk of HNCAs was associated inversely with leanness among current smokers, and directly with abdominal obesity and height. Impact: Our study provides evidence that the association between leanness and risk of HNCAs may be due to effect modification by smoking. Cancer Epidemiol Biomarkers Prev; 23(11); 2422–9. ©2014 AACR.
Resumo:
The ways in which fish use space in nature are described, distinguishing between movements within a home range, dispersal and directed migration, as are the mechanisms that determine how fish use space. The external stimuli to which fish respond, how they use these cues to find their way around and the role of hormones in migration are also covered. An account is then given of how movement and orientation change with age, the evidence for inherited differences in these aspects of behaviour and environmental effects on development of space use patterns. The benefits that accrue to fish from moving in particular ways are described, as are adverse consequences of such movements, in the form of energetic costs and exposure to predators and pathogens. The ways in which benefits and costs are balanced against each other are discussed, with special reference to diurnal vertical migration. Although cultured fish usually inhabit confined spaces, their natural patterns of orientation and movement can cause a number of problems in aquaculture and some of these are described. Such problems are amenable to biological solutions and these are considered in the final section of this chapter, which also looks at the potential for using what is known about how fish move about to improve the effectiveness of general husbandry practices.
Resumo:
The quantity and quality of spatial data are increasing rapidly. This is particularly evident in the case of movement data. Devices capable of accurately recording the position of moving entities have become ubiquitous and created an abundance of movement data. Valuable knowledge concerning processes occurring in the physical world can be extracted from these large movement data sets. Geovisual analytics offers powerful techniques to achieve this. This article describes a new geovisual analytics tool specifically designed for movement data. The tool features the classic space-time cube augmented with a novel clustering approach to identify common behaviour. These techniques were used to analyse pedestrian movement in a city environment which revealed the effectiveness of the tool for identifying spatiotemporal patterns. © 2014 Taylor & Francis.
Resumo:
Recent technological advances have increased the quantity of movement data being recorded. While valuable knowledge can be gained by analysing such data, its sheer volume creates challenges. Geovisual analytics, which helps the human cognition process by using tools to reason about data, offers powerful techniques to resolve these challenges. This paper introduces such a geovisual analytics environment for exploring movement trajectories, which provides visualisation interfaces, based on the classic space-time cube. Additionally, a new approach, using the mathematical description of motion within a space-time cube, is used to determine the similarity of trajectories and forms the basis for clustering them. These techniques were used to analyse pedestrian movement. The results reveal interesting and useful spatiotemporal patterns and clusters of pedestrians exhibiting similar behaviour.
Resumo:
While the origins of consonance and dissonance in terms of acoustics, psychoacoustics and physiology have been debated for centuries, their plausible effects on movement synchronization have largely been ignored. The present study aims to address this by investigating whether, and if so how, consonant/dissonant pitch intervals affect the spatiotemporal properties of regular reciprocal aiming movements. We compared movements synchronized either to consonant or to dissonant sounds, and showed that they were differently influenced by the degree of consonance of the sound presented. Interestingly, the difference was present after the sound stimulus was removed. In this case, the performance measured after consonant sound exposure was found to be more stable and accurate, with a higher percentage of information/movement coupling (tau-coupling) and a higher degree of movement circularity when compared to performance measured after the exposure to dissonant sounds. We infer that the neural resonance representing consonant tones leads to finer perception/action coupling which in turn may help explain the prevailing preference for these types of tones.
Resumo:
Previous research has shown that Parkinson's disease (PD) patients can increase the speed of their movement when catching a moving ball compared to when reaching for a static ball (Majsak et al., 1998). A recent model proposed by Redgrave et al. (2010) explains this phenomenon with regard to the dichotomic organization of motor loops in the basal ganglia circuitry and the role of sensory micro-circuitries in the control of goal-directed actions. According to this model, external visual information that is relevant to the required movement can induce a switch from a habitual control of movement toward an externally-paced, goal-directed form of guidance, resulting in augmented motor performance (Bienkiewicz et al., 2013). In the current study, we investigated whether continuous acoustic information generated by an object in motion can enhance motor performance in an arm reaching task in a similar way to that observed in the studies of Majsak et al. (1998, 2008). In addition, we explored whether the kinematic aspects of the movement are regulated in accordance with time to arrival information generated by the ball's motion as it reaches the catching zone. A group of 7 idiopathic PD (6 male, 1 female) patients performed a ball-catching task where the acceleration (and hence ball velocity) was manipulated by adjusting the angle of the ramp. The type of sensory information (visual and/or auditory) specifying the ball's arrival at the catching zone was also manipulated. Our results showed that patients with PD demonstrate improved motor performance when reaching for a ball in motion, compared to when stationary. We observed how PD patients can adjust their movement kinematics in accordance with the speed of a moving target, even if vision of the target is occluded and patients have to rely solely on auditory information. We demonstrate that the availability of dynamic temporal information is crucial for eliciting motor improvements in PD. Furthermore, these effects appear independent from the sensory modality through-which the information is conveyed.