233 resultados para atom tracking
Resumo:
In this paper, we consider the problem of tracking similar objects. We show how a mean field approach can be used to deal with interacting targets and we compare it with Markov Chain Monte Carlo (MCMC). Two mean field implementations are presented. The first one is more general and uses particle filtering. We discuss some simplifications of the base algorithm that reduce the computation time. The second one is based on suitable Gaussian approximations of probability densities that lead to a set of self-consistent equations for the means and covariances. These equations give the Kalman solution if there is no interaction. Experiments have been performed on two kinds of sequences. The first kind is composed of a single long sequence of twenty roaming ants and was previously analysed using MCMC. In this case, our mean field algorithms obtain substantially better results. The second kind corresponds to selected sequences of a football match in which the interaction avoids tracker coalescence in situations where independent trackers fail.
Resumo:
In this paper, we show how interacting and occluding targets can be tackled successfully within a Gaussian approximation. For that purpose, we develop a general expansion of the mean and covariance of the posterior and we consider a first order approximation of it. The proposed method differs from EKF in that neither a non-linear dynamical model nor a non-linear measurement vector to state relation have to be defined, so it works with any kind of interaction potential and likelihood. The approach has been tested on three sequences (10400, 2500, and 400 frames each one). The results show that our approach helps to reduce the number of failures without increasing too much the computation time with respect to methods that do not take into account target interactions.
Resumo:
Calculations of ?-spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation ?-spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation ?-spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective 'narrowing' of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of small positron-nuclear separations where the electron momentum is large. To investigate the effect of the nuclear repulsion, as well as that of short-range electron-positron and positron-molecule correlations, a linear combination of atomic orbital description of the molecular orbitals is employed. It facilitates the incorporation of correction factors which can be calculated from atomic many-body theory and account for the repulsion and correlations. Their inclusion in the calculation gives -spectrum linewidths that are in much better agreement with experiment. Furthermore, it is shown that the effective distortion of the electron momentum density, when it is observed through positron annihilation -spectra, can be approximated by a relatively simple scaling factor. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Described here is a proposed experiment to use laser-assisted photorecombination of positrons from a trap-based beam and metal atoms in the gas phase to measure positron-atom binding energies. Signal rates are estimated, based in part upon experience studying resonant annihilation spectra using a trapbased positron beam. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
We present a mechanism for cooling atoms by a laser beam reflected from a single mirror. The cooling relies on the dipole force and thus in principle applies to arbitrary refractive particles including atoms, molecules, or dielectric spheres. Friction and equilibrium temperatures are derived by an analytic perturbative approach. Finally, semiclassical Monte-Carlo simulations are performed to validate the analytic results.
Resumo:
The application of Eye Tracking (ET) to the study of social functioning in Asperger Syndrome (AS) provides a unique perspective into social attention and cognition in this atypical neurodevelopmental group. Research in this area has shown how ET can capture social attention atypicalities within this group, such as diminished fixations to the eye region when viewing still images and movie clips; increased fixation to the mouth region; reduced face gaze. Issues exist, however, within the literature, where the type (static/dynamic) and the content (ecological validity) of stimuli used appear to affect the nature of the gaze patterns reported. Objectives: Our research aims were: using the same group of adolescents with AS, to compare their viewing patterns to age and IQ matched typically developing (TD) adolescents using stimuli considered to represent a hierarchy of ecological validity, building from static facial images; through a non-verbal movie clip; through verbal footage from real-life conversation; to eye tracking during real-life conversation. Methods: Eleven participants with AS were compared to 11 TD adolescents, matched for age and IQ. In Study 1, participants were shown 2 sets of static facial images (emotion faces, still images taken from the dynamic clips). In Study 2, three dynamic clips were presented (1 non-verbal movie clip, 2 verbal footage from real-life conversation). Study 3 was an exploratory study of eye tracking during a real-life conversation. Eye movements were recorded via a HiSpeeed (240Hz) SMI eye tracker fitted with chin and forehead rests. Various methods of analysis were used, including a paradigm for temporal analysis of the eye movement data. Results: Results from these studies confirmed that the atypical nature of social attention in AS was successfully captured by this paradigm. While results differed across stimulus sets,
collectively they demonstrated how individuals with AS failed to focus on the most socially relevant aspects of the various stimuli presented. There was also evidence that the eye movements of the AS group were atypically affected by the presence of motion and verbal information. Discriminant Function Analysis demonstrated that the ecological validity of stimuli was an important factor in identifying atypicalities associated with AS, with more accurate classifications of AS and TD groups occurring for more naturalistic stimuli (dynamic rather than static). Graphical analysis of temporal sequences of eye movements revealed the atypical manner in which AS participants followed interactions within the dynamic stimuli. Taken together with data on the order of gaze patterns, more subtle atypicalities were detected in the gaze behaviour of AS individuals towards more socially pertinent regions of the dynamic stimuli. Conclusions: These results have potentially important implications for our understanding of deficits in Asperger Syndrome, as they show that, with more naturalistic stimuli, subtle differences in social attention can be detected that
Radioactive-labelling of MWCNTs for Potential Tracking of Movement In Vitro, submitted to Nanoscale.