276 resultados para X ray line broadening
Resumo:
We report a systematic study of double pulse pumping of the Ni-like Sm x-ray laser at 73 Angstrom, currently the shortest wavelength saturated x-ray laser. It is found that the Sm x-ray laser output can change by orders of magnitude when the intensity ratio of the pumping pulses and their relative delay are varied. Optimum pumping conditions are found and interpreted in terms of a simple model. (C) 1999 American Institute of Physics. [S0021-8979(99)07102-9].
Resumo:
The spatial coherence of a nanosecond pulsed germanium collisionally excited x-ray laser is measured experimentally for three target configurations. The diagnostic is based on Young's slit interference fringes with a dispersing element to resolve the 23.2- and 23.6-nm spectral lines. Target configurations include a double-slab target, known as the injector, and geometries in which the injector image is image relayed to seed either an additional single-slab target or a second double-slab target. A special feature of this study is the observation of the change in the apparent source size with angle of refraction across the diverging laser beam. Source sizes derived with a Gaussian source model decrease from 44 mu m for the injector target by a variable factor of as much as 2, according to target configuration, for beams leaving the additional amplifiers after strong refraction in the plasma. (C) 1998 Optical Society of America [S0740-3224(98)00810-8].
Resumo:
Saturation of a low pump energy x-ray laser utilizing a transient inversion mechanism on the 3p-3s transition at 32.63 nm in Ne-like Ti has been demonstrated. A close to saturation amplification was simultaneously achieved for the 3d-3p, J=1-->1 transition at 30.15 nm. Small signal effective transient gain coefficients of g similar to 46 and similar to 35 cm(-1) and gain-length products of 16.7 and 16.9 for these lines were obtained. Experiments demonstrate that it is possible to achieve saturated laser action in a transient regime with Ne-like Ti for a pump energy as low as similar to 5 J.
Resumo:
The transient-excitation pumping scheme, in which a picosecond duration pulse rapidly heats the plasma preformed by a low-intensity nanosecond pulse, was used to pump the Ne-like germanium, J = 0-1 transition at 19.6 nm. A small-signal gain coefficient of 30 cm(-1) was measured for targets less than or equal to 5 mm long. (C) 1998 Optical Society of America.
Resumo:
The time dependence of the spatial coherence of the combined spectral lines at 23.2 and 23.6 nm from the Ge XXIII collisionally pumped soft-x-ray laser with a double-slab target is examined within a single nanosecond pulse by use of Young's interference fringes and a streak camera. High source intensity is linked with low spatial coherence and vice verse. Calculations of the source intensity, size, and position have also been made; these calculations refer to a single-slab source. Comparison between the observed and calculated intensities, and of the source sizes both calculated and derived from the Young's fringes by interpretation with a Gaussian model of source emission, show good agreement in general trends. (C) 1998 Optical Society of America [S0740-3224(98)01905-5].
Resumo:
We report the first demonstration of saturation in a Ni-like x-ray laser, specifically Ni-like Ag x-ray laser at 14 nm. Using high-resolution spatial imaging and angularly resolved streaking techniques, the output source size as well as the time history, divergence, energy, and spatial profile of the output beam have been fully characterized. The output intensity of the Ag laser was measured to be about 70 GWcm(-2) The narrow divergence, short pulse duration, high efficiency, and high brightness of the Ag laser make it an ideal candidate for many x-ray laser applications.
Resumo:
We present simultaneous and continuous observations of the Halpha, Hbeta, He I D-3, Na I D-1,D-2 doublet and the Ca II H&K lines for the RS CVn system HR 1099. The spectroscopic observations were obtained during the MUSICOS 1998 campaign involving several observatories and instruments, both echelle and long-slit spectrographs. During this campaign, HR 1099 was observed almost continuously for more than 8 orbits of 2.(d)8. Two large optical flares were observed, both showing an increase in the emission of Halpha, Ca II H K, Hbeta and He I D-3 and a strong filling-in of the Na I D-1, D-2 doublet. Contemporary photometric observations were carried out with the robotic telescopes APT-80 of Catania and Phoenix-25 of Fairborn Observatories. Maps of the distribution of the spotted regions on the photosphere of the binary components were derived using the Maximum Entropy and Tikhonov photometric regularization criteria. Rotational modulation was observed in Halpha and He I D-3 in anti-correlation with the photometric light curves. Both flares occurred at the same binary phase (0.85), suggesting that these events took place in the same active region. Simultaneous X-ray observations, performed by ASM on board RXTE, show several flare-like events, some of which correlate well with the observed optical flares. Rotational modulation in the X-ray light curve has been detected with minimum flux when the less active G5 V star was in front. A possible periodicity in the X-ray flare-like events was also found.
Resumo:
The current saturated operation of X-ray lasers at wavelengths > 15 nm requires at least kilojoule drive energy, which is only available at the largest laser installations in the world, Using a specially designed drive pulse configuration, saturated operation of a Ni-like Sn X-ray laser at 12 nm has been achieved with only 75 J drive energy, An efficiency as high as 9 x 10(6) in converting laser energy from the 1 eV optical spectral range to the 100 eV soft X-ray range has been reached, This paves the way for applications of saturated X-ray lasers at 12 nm at many other smaller laboratories. (C) 1997 Published by Elsevier Science B.V.
Resumo:
We measure the two-dimensional, near-field spatial distribution of a 140-Angstrom nickel-like silver x-ray laser at the output aperture with high magnification using a curved multilayer x-ray mirror to image the output onto an x-ray charge-coupled device camera. Lasing is created by illuminating silver slab targets with a pair of 75 ps laser pulses separated by 2.2 nsec from the Vulcan laser. The two-dimensional, high-resolution, spatial image shows the x-ray laser source size and its position relative to the target surface. A dramatic change in both the position and source size are observed for the refraction compensating curved target as compared with the flat targets.
Resumo:
A saturated nickel-like samarium x-ray laser beam at 7 nanometers has been demonstrated with an output energy of 0.3 millijoule in 50-picosecond pulses, demonstrating that saturated operation of a laser at wavelengths shorter than 10 nanometers can be achieved. The narrow divergence, short wavelength, short pulse duration, high efficiency, and high brightness of this samarium laser make it an ideal candidate for many x-ray laser applications.