493 resultados para Vincent Jouve
Resumo:
A single layer, frequency selective surface based, sub-millimeter wave transmission polarizer is presented that converts incident slant linear 45° polarization into circular polarization upon transmission. The polarization convertor consists of a 30 mm diameter 10 thick silicon reinforced metalized screen containing 2700 resonator cells and perforated with nested split ring slot apertures. The screen was designed and optimized using CST Microwave Studio and predictions were validated experimentally by transmission measurements over the 250-365 GHz frequency range. This frequency range is used for remote environmental monitoring and 325 GHz represents a molecular emission line for H2O. The results obtained show good agreement between measured and modeled predictions. The measured 3 dB axial ratio bandwidth was 11.75%, measured minimum Axial Ratio was 0.19 dB and the measured insertion loss of the single layer screen was 3.38 dB
Resumo:
A recently introduced power-combining scheme for a Class-E amplifier is, for the first time, experimentally validated in this paper. A small value choke of 2.2 nH was used to substitute for the massive dc-feed inductance required in the classic Class-E circuit. The power-combining amplifier presented, which operates from a 3.2-V dc supply voltage, is shown to be able to deliver a 24-dBm output power and a 9.5-dB gain, with 64% drain efficiency and 57% power-added efficiency at 2.4 GHz. The power amplifier exhibits a 350-MHz bandwidth within which a drain efficiency that is better than 60% and an output power that is higher than 22 dBm were measured. In addition, by adopting three-harmonic termination strategy, excellent second-and third-harmonic suppression levels of 50 and 46 dBc, respectively, were obtained. The complete design cycle from analysis through fabrication to characterization is explained. © 2010 IEEE.
Resumo:
A new design method that greatly enhances the reflectivity bandwidth and angular stability beyond what is possible with a simple Salisbury screen is described. The performance improvement is obtained from a frequency selective surface (FSS) which is sandwiched between the outermost 377 Ω/square resistive sheet and the ground plane. This is designed to generate additional reflection nulls at two predetermined frequencies by selecting the size of the two unequal length printed dipoles in each unit cell. A multiband Salisbury screen is realised by adjusting the reflection phase of the FSS to position one null above and the other below the inherent absorption band of the structure. Alternatively by incorporating resistive elements midway on the dipoles, it is shown that the three absorption bands can be merged to create a structure with a −10 dB reflectivity bandwidth which is 52% larger and relatively insensitive to incident angle compared to a classical Salisbury screen having the same thickness. CST Microwave Studio was used to optimise the reflectivity performance and simulate the radar backscatter from the structure. The numerical results are shown to be in close agreement with bistatic measurements for incident angles up to 40° over the frequency range 5.4−18 GHz.