179 resultados para ULNAR NERVE
Resumo:
Phalloidin fluorescence technique, enzyme cytochemistry and immunocytochemistry, in conjunction with confocal scanning laser microscopy, were used to describe the neuromusculature of the monogenean skin parasite Macrogyrodactylus congolensis from the Nile catfish Clarias gariepinus. The body wall muscles are composed of an outer layer of compactly arranged circular fibres, an intermediate layer of paired longitudinal fibres and an inner layer of well-spaced bands of diagonal fibres arranged in two crossed directions. The central nervous system consists of paired cerebral ganglia from which three pairs of longitudinal ventral, lateral and dorsal nerve cords arise. The nerve cords are connected at intervals by many transverse connectives. Both central and peripheral nervous systems are bilaterally symmetrical and better developed ventrally than laterally and dorsally. Structural and functional correlates of the neuromusculature of the pharynx, haptor and reproductive tracts were examined. Results implicate acetylcholine, FMRFamide-related peptides and serotonin in sensory and motor function. The results were compared with those of Macrogyrodactylus clarii, a gill parasite of the same host fish C. gariepinus.
Resumo:
Phalloidin fluorescence technique, enzyme cytochemistry and immunocytochemistry in conjunction with confocal scanning laser microscopy have been used for the first time to describe the nervous and muscle systems of the viviparous monogenean gill parasite, Macrogyrodactylus clarii. The gross spatial arrangement of muscle and associated cholinergic, peptidergic and aminergic innervations has been examined. The central nervous system (CNS) consists of paired cerebral ganglia from which emanate three pairs of longitudinal ventral, lateral and dorsal nerve cords, connected at intervals by transverse connectives. The CNS is better developed ventrally than dorsally or laterally, and has the strongest reactivity for all neuroactive substances examined. Structural and functional correlates of the neuromusculature of the pharynx, haptor and reproductive tracts have been examined. Results implicate acetylcholine, FMRFamide-related peptides (FaRPs) and serotonin in sensory and motor function in this monogenean, although confirmatory physiological data are obviously required.
Resumo:
Introduction: Chitons (Polyplacophora) are molluscs considered to have a simple nervous system without cephalisation. The position of the class within Mollusca is the topic of extensive debate and neuroanatomical characters can provide new sources of phylogenetic data as well as insights into the fundamental biology of the organisms. We report a new discrete anterior sensory structure in chitons, occurring throughout Lepidopleurida, the order of living chitons that retains plesiomorphic characteristics.
Results: The novel "Schwabe organ" is clearly visible on living animals as a pair of streaks of brown or purplish pigment on the roof of the pallial cavity, lateral to or partly covered by the mouth lappets. We describe the histology and ultrastructure of the anterior nervous system, including the Schwabe organ, in two lepidopleuran chitons using light and electron microscopy. The oesophageal nerve ring is greatly enlarged and displays ganglionic structure, with the neuropil surrounded by neural somata. The Schwabe organ is innervated by the lateral nerve cord, and dense bundles of nerve fibres running through the Schwabe organ epithelium are frequently surrounded by the pigment granules which characterise the organ. Basal cells projecting to the epithelial surface and cells bearing a large number of ciliary structures may be indicative of sensory function. The Schwabe organ is present in all genera within Lepidopleurida (and absent throughout Chitonida) and represents a novel anatomical synapomorphy of the clade.
Conclusions: The Schwabe organ is a pigmented sensory organ, found on the ventral surface of deep-sea and shallow water chitons; although its anatomy is well understood, its function remains unknown. The anterior commissure of the chiton oesophagial nerve ring can be considered a brain. Our thorough review of the chiton central nervous system, and particularly the sensory organs of the pallial cavity, provides a context to interpret neuroanatomical homology and assess this new sense organ.
Resumo:
PURPOSE: Comparing the relative effectiveness of interventions across glaucoma trials can be problematic due to differences in definitions of outcomes. We sought to identify a key set of clinical outcomes and reach consensus on how best to measure them from the perspective of glaucoma experts.
METHODS: A 2-round electronic Delphi survey was conducted. Round 1 involved 25 items identified from a systematic review. Round 2 was developed based on information gathered in round 1. A 10-point Likert scale was used to quantify importance and consensus of outcomes (7 outcomes) and ways of measuring them (44 measures). Experts were identified through 2 glaucoma societies membership-the UK and Eire Glaucoma Society and the European Glaucoma Society. A Nominal Group Technique (NGT) followed the Delphi process. Results were analyzed using descriptive statistics.
RESULTS: A total of 65 participants completed round 1 out of 320; of whom 56 completed round 2 (86%). Agreement on the importance of outcomes was reached on 48/51 items (94%). Intraocular pressure (IOP), visual field (VF), safety, and anatomic outcomes were classified as highly important. Regarding methods of measurement of IOP, "mean follow-up IOP" using Goldmann applanation tonometry achieved the highest importance, whereas for evaluating VFs "global index mean deviation/defect (MD)" and "rate of VF progression" were the most important. Retinal nerve fiber layer (RNFL) thickness measured by optical coherence tomography (OCT) was identified as highly important. The NGT results reached consensus on "change of IOP (mean of 3 consecutive measurements taken at fixed time of day) from baseline," change of VF-MD values (3 reliable VFs at baseline and follow-up visit) from baseline, and change of RNFL thickness (2 good quality OCT images) from baseline.
CONCLUSIONS: Consensus was reached among glaucoma experts on how best to measure IOP, VF, and anatomic outcomes in glaucoma randomized controlled trials.
Resumo:
AIMS: To assess quantitatively variations in the extent of capillary basement membrane (BM) thickening between different retinal layers and within arterial and venous environments during diabetes.
METHODS: One year after induction of experimental (streptozotocin) diabetes in rats, six diabetic animals together with six age-matched control animals were sacrificed and the retinas fixed for transmission electron microscopy (TEM). Blocks of retina straddling the major arteries and veins in the central retinal were dissected out, embedded in resin, and sectioned. Capillaries in close proximity to arteries or veins were designated as residing in either an arterial (AE) or a venous (VE) environment respectively, and the retinal layer in which each capillary was located was also noted. The thickness of the BM was then measured on an image analyser based two dimensional morphometric analysis system.
RESULTS: In both diabetics and controls the AE capillaries had consistently thicker BMs than the VE capillaries. The BMs of both AE and VE capillaries from diabetics were thicker than those of capillaries in the corresponding retinal layer from the normal rats (p < or = 0.005). Also, in normal AE and VE capillaries and diabetic AE capillaries the BM in the nerve fibre layer (NFL) was thicker than that in either the inner (IPL) or outer (OPL) plexiform layers (p < or = 0.001). However, in diabetic VE capillaries the BMs of capillaries in the NFL were thicker than those of capillaries in the IPL (p < or = 0.05) which, in turn, had thicker BMs than capillaries in the OPL (p < or = 0.005).
CONCLUSIONS: The variation in the extent of capillary BM thickening between different retinal layers within AE and VE environments may be related to differences in levels of oxygen tension and oxidative stress in the retina around arteries compared with that around veins.
Resumo:
BACKGROUND: Glaucoma is a leading cause of avoidable blindness worldwide. Open angle glaucoma is the most common type of glaucoma. No randomised controlled trials have been conducted evaluating the effectiveness of glaucoma screening for reducing sight loss. It is unclear what the most appropriate intervention to be evaluated in any glaucoma screening trial would be. The purpose of this study was to develop the clinical components of an intervention for evaluation in a glaucoma (open angle) screening trial that would be feasible and acceptable in a UK eye-care service.
METHODS: A mixed-methods study, based on the Medical Research Council (MRC) framework for complex interventions, integrating qualitative (semi-structured interviews with 46 UK eye-care providers, policy makers and health service commissioners), and quantitative (economic modelling) methods. Interview data were synthesised and used to revise the screening interventions compared within an existing economic model.
RESULTS: The qualitative data indicated broad based support for a glaucoma screening trial to take place in primary care, using ophthalmic trained technical assistants supported by optometry input. The precise location should be tailored to local circumstances. There was variability in opinion around the choice of screening test and target population. Integrating the interview findings with cost-effectiveness criteria reduced 189 potential components to a two test intervention including either optic nerve photography or screening mode perimetry (a measure of visual field sensitivity) with or without tonometry (a measure of intraocular pressure). It would be more cost-effective, and thus acceptable in a policy context, to target screening for open angle glaucoma to those at highest risk but for both practicality and equity arguments the optimal strategy was screening a general population cohort beginning at age forty.
CONCLUSIONS: Interventions for screening for open angle glaucoma that would be feasible from a service delivery perspective were identified. Integration within an economic modelling framework explicitly highlighted the trade-off between cost-effectiveness, feasibility and equity. This study exemplifies the MRC recommendation to integrate qualitative and quantitative methods in developing complex interventions. The next step in the development pathway should encompass the views of service users.
Resumo:
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Resumo:
Many types of non-invasive brain stimulation alter corticospinal excitability (CSE). Paired associative stimulation (PAS) has attracted particular attention as its effects ostensibly adhere to Hebbian principles of neural plasticity. In prototypical form, a single electrical stimulus is directed to a peripheral nerve in close temporal contiguity with transcranial magnetic stimulation delivered to the contralateral primary motor cortex (M1). Repeated pairing of the two discrete stimulus events (i.e. association) over an extended period either increases or decreases the excitability of corticospinal projections from M1, contingent on the interstimulus interval. We studied a novel form of associative stimulation, consisting of brief trains of peripheral afferent stimulation paired with short bursts of high frequency (≥80 Hz) transcranial alternating current stimulation (tACS) over contralateral M1. Elevations in the excitability of corticospinal projections to the forearm were observed for a range of tACS frequency (80, 140 and 250 Hz), current (1, 2 and 3 mA) and duration (500 and 1000 ms) parameters. The effects were at least as reliable as those brought about by PAS or transcranial direct current stimulation. When paired with tACS, muscle tendon vibration also induced elevations of CSE. No such changes were brought about by the tACS or peripheral afferent stimulation alone. In demonstrating that associative effects are expressed when the timing of the peripheral and cortical events is not precisely circumscribed, these findings suggest that multiple cellular pathways may contribute to a long term potentiation-type response. Their relative contributions will differ depending on the nature of the induction protocol that is used.
Resumo:
Paired Associative Stimulation (PAS) has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS) delivered to the contralateral primary motor cortex (M1). Repeated pairing of the stimuli (i.e., association) over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI). It has been suggested that these effects represent a form of associative long-term potentiation (LTP) and depression (LTD) that bears resemblance to spike-timing dependent plasticity (STDP) as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasizing the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation.
Resumo:
Adaptor protein (AP) complexes bind to transmembrane proteins destined for internalization and to membrane lipids, so linking cargo to the accessory internalization machinery. This machinery interacts with the appendage domains of APs, which have platform and beta-sandwich subdomains, forming the binding surfaces for interacting proteins. Proteins that interact with the subdomains do so via short motifs, usually found in regions of low structural complexity of the interacting proteins. So far, up to four motifs have been identified that bind to and partially compete for at least two sites on each of the appendage domains of the AP2 complex. Motifs in individual accessory proteins, their sequential arrangement into motif domains, and partial competition for binding sites on the appendage domains coordinate the formation of endocytic complexes in a temporal and spatial manner. In this work, we examine the dominant interaction sequence in amphiphysin, a synapse-enriched accessory protein, which generates membrane curvature and recruits the scission protein dynamin to the necks of coated pits, for the platform subdomain of the alpha-appendage. The motif domain of amphiphysin1 contains one copy of each of a DX(F/W) and FXDXF motif. We find that the FXDXF motif is the main determinant for the high affinity interaction with the alpha-adaptin appendage. We describe the optimal sequence of the FXDXF motif using thermodynamic and structural data and show how sequence variation controls the affinities of these motifs for the alpha-appendage.
Resumo:
Clathrin-mediated endocytosis involves the assembly of a network of proteins that select cargo, modify membrane shape and drive invagination, vesicle scission and uncoating. This network is initially assembled around adaptor protein (AP) appendage domains, which are protein interaction hubs. Using crystallography, we show that FxDxF and WVxF peptide motifs from synaptojanin bind to distinct subdomains on alpha-appendages, called 'top' and 'side' sites. Appendages use both these sites to interact with their binding partners in vitro and in vivo. Occupation of both sites simultaneously results in high-affinity reversible interactions with lone appendages (e.g. eps15 and epsin1). Proteins with multiple copies of only one type of motif bind multiple appendages and so will aid adaptor clustering. These clustered alpha(appendage)-hubs have altered properties where they can sample many different binding partners, which in turn can interact with each other and indirectly with clathrin. In the final coated vesicle, most appendage binding partners are absent and thus the functional status of the appendage domain as an interaction hub is temporal and transitory giving directionality to vesicle assembly.
Resumo:
The BAR (Bin/amphiphysin/Rvs) domain is the most conserved feature in amphiphysins from yeast to human and is also found in endophilins and nadrins. We solved the structure of the Drosophila amphiphysin BAR domain. It is a crescent-shaped dimer that binds preferentially to highly curved negatively charged membranes. With its N-terminal amphipathic helix and BAR domain (N-BAR), amphiphysin can drive membrane curvature in vitro and in vivo. The structure is similar to that of arfaptin2, which we find also binds and tubulates membranes. From this, we predict that BAR domains are in many protein families, including sorting nexins, centaurins, and oligophrenins. The universal and minimal BAR domain is a dimerization, membrane-binding, and curvature-sensing module.
Resumo:
Epidermal growth factor receptor pathway substrate clone 15 (Eps15) is a protein implicated in endocytosis, endosomal protein sorting, and cytoskeletal organization. Its role is, however, still unclear, because of reasons including limitations of dominant-negative experiments and apparent redundancy with other endocytic proteins. We generated Drosophila eps15-null mutants and show that Eps15 is required for proper synaptic bouton development and normal levels of synaptic vesicle (SV) endocytosis. Consistent with a role in SV endocytosis, Eps15 moves from the center of synaptic boutons to the periphery in response to synaptic activity. The endocytic protein, Dap160/intersectin, is a major binding partner of Eps15, and eps15 mutants phenotypically resemble dap160 mutants. Analyses of eps15 dap160 double mutants suggest that Eps15 functions in concert with Dap160 during SV endocytosis. Based on these data, we hypothesize that Eps15 and Dap160 promote the efficiency of endocytosis from the plasma membrane by maintaining high concentrations of multiple endocytic proteins, including dynamin, at synapses.
Resumo:
Although the synapsin phosphoproteins were discovered more than 30 years ago and are known to play important roles in neurotransmitter release and synaptogenesis, a complete picture of their functions within the nerve terminal is lacking. It has been shown that these proteins play an important role in the clustering of synaptic vesicles (SVs) at active zones and function as modulators of synaptic strength by acting at both pre- and postdocking levels. Recent studies have demonstrated that synapsins migrate to the endocytic zone of central synapses during neurotransmitter release, which suggests that there are additional functions for these proteins in SV recycling.
Resumo:
Efficient synaptic vesicle membrane recycling is one of the key factors required to sustain neurotransmission. We investigated potential differences in the compensatory endocytic machineries in two glutamatergic synapses with phasic and tonic patterns of activity in the lamprey spinal cord. Post-embedding immunocytochemistry demonstrated that proteins involved in synaptic vesicle recycling, including dynamin, intersectin, and synapsin, occur at higher levels (labeling per vesicle) in tonic dorsal column synapses than in phasic reticulospinal synapses. Synaptic vesicle protein 2 occurred at similar levels in the two types of synapse. After challenging the synapses with high potassium stimulation for 30 min the vesicle pool in the tonic synapse was maintained at a normal level, while that in the phasic synapse was partly depleted along with expansion of the plasma membrane and accumulation of clathrin-coated intermediates at the periactive zone. Thus, our results indicate that an increased efficiency of the endocytic machinery in a synapse may be one of the factors underlying the ability to sustain neurotransmission at high rates.