156 resultados para Task constraints
Resumo:
Cross education is the process whereby training of one limb gives rise to increases in the subsequent performance of its opposite counterpart. The execution of many unilateral tasks is associated with increased excitability of corticospinal projections from primary motor cortex (M1) to the opposite limb. It has been proposed that these effects are causally related. Our aim was to establish whether changes in corticospinal excitability arising from prior training of the opposite limb determine levels of interlimb transfer.
We used three vision conditions shown previously to modulate the excitability of corticospinal projections to the inactive (right) limb during wrist flexion movements performed by the training (left) limb. These were: mirrored visual feedback of the training limb; no visual feedback of either limb; and visual feedback of the inactive limb. Training comprised 300 discrete, ballistic wrist flexion movements executed as rapidly as possible. Performance of the right limb on the same task was assessed prior to, at the mid point of, and following left limb training.
There was no evidence that variations in the excitability of corticospinal projections (assessed by transcranial magnetic stimulation (TMS)) to the inactive limb were associated with, or predictive of, the extent of interlimb transfer that was expressed. There were however associations between alterations in muscle activation dynamics observed for the untrained limb, and the degree of positive transfer that arose from training of the opposite limb.
The results suggest that the acute adaptations that mediate the bilateral performance gains realised through unilateral practice of this ballistic wrist flexion task are mediated by neural elements other than those within M1 that are recruited at rest by single-pulse TMS.
Resumo:
There is lack of consistent evidence as to how well PD patients are able to accurately time their movements across space with an external acoustic signal. For years, research based on the finger-tapping paradigm, the most popular paradigm for exploring the brain's ability to time movement, has provided strong evidence that patients are not able to accurately reproduce an isochronous interval [i.e., Ref. (1)]. This was undermined by Spencer and Ivry (2) who suggested a specific deficit in temporal control linked to emergent, rhythmical movement not event-based actions, which primarily involve the cerebellum. In this study, we investigated motor timing of seven idiopathic PD participants in event-based sensorimotor synchronization task. Participants were asked to move their finger horizontally between two predefined target zones to synchronize with the occurrence of two sound events at two time intervals (1.5 and 2.5 s). The width of the targets and the distance between them were manipulated to investigate impact of accuracy demands and movement amplitude on timing performance. The results showed that participants with PD demonstrated specific difficulties when trying to accurately synchronize their movements to a beat. The extent to which their ability to synchronize movement was compromised was found to be related to the severity of PD, but independent of the spatial constraints of the task.
Resumo:
Concurrent feedback provided during acquisition can enhance performance of novel tasks. The ‘guidance hypothesis’ predicts that feedback provision leads to dependence and poor performance in its absence. However, appropriately-structured feedback information provided through sound (‘sonification’) may not be subject to this effect. We test this directly using a rhythmic bimanual shape-tracing task in which participants learned to move at a 4:3 timing ratio. Sonification of movement and demonstration was compared to two other learning conditions: (1) sonification of task demonstration alone and (2) completely silent practice (control). Sonification of movement emerged as the most effective form of practice, reaching significantly lower error scores than control. Sonification of solely the demonstration, which was expected to benefit participants by perceptually unifying task requirements, did not lead to better performance than control. Good performance was maintained by participants in the sonification condition in an immediate retention test without feedback, indicating that the use of this feedback can overcome the guidance effect. On a 24-hour retention test, performance had declined and was equal between groups. We argue that this and similar findings in the feedback literature are best explained by an ecological approach to motor skill learning which places available perceptual information at the highest level of importance.