218 resultados para Targeting Domain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferroelectric domain wall injection has been demonstrated by engineering of the
local electric field, using focused ion beam milled defects in thin single crystal lamellae of KTiOPO4 (KTP). The electric field distribution (top) displays localized field hot-spots, which correlate with nucleation events (bottom). Designed local field variations can also dictate subsequent domain wall mobility, demonstrating a new paradigm in ferroelectric domain wall control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Memristive materials and devices, which enable information storage and processing on one and the same physical platform, offer an alternative to conventional von Neumann computation architectures. Their continuous spectra of states with intricate field-history dependence give rise to complex dynamics, the spatial aspect of which has not been studied in detail yet. Here, we demonstrate that ferroelectric domain switching induced by a scanning probe microscopy tip exhibits rich pattern dynamics, including intermittency, quasiperiodicity and chaos. These effects are due to the interplay between tip-induced polarization switching and screening charge dynamics, and can be mapped onto the logistic map. Our findings may have implications for ferroelectric storage, nanostructure fabrication and transistor-less logic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Older adults face important risky decisions about their health, their financial future, and their social environment. We examine age differences in risk-taking behaviors in multiple risk domains across the adult life span.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial tetragonal 425 and 611 nm thick Pb(ZrTi)O (PZT) films are deposited by pulsed laser deposition on SrRuO-coated (100) SrTiO 24° tilt angle bicrystal substrates to create a single PZT grain boundary with a well-defined orientation. On either side of the bicrystal boundary, the films show square hysteresis loops and have dielectric permittivities of 456 and 576, with loss tangents of 0.010 and 0.015, respectively. Using piezoresponse force microscopy (PFM), a decrease in the nonlinear piezoelectric response is observed in the vicinity (720-820 nm) of the grain boundary. This region represents the width over which the extrinsic contributions to the piezoelectric response (e.g., those associated with the domain density/configuration and/or the domain wall mobility) are influenced by the presence of the grain boundary. Transmission electron microscope (TEM) images collected near and far from the grain boundary indicate a strong preference for (101)/(1-01) type domain walls at the grain boundary, whereas (011)/(01-1) and (101)/(1-01) are observed away from this region. It is proposed that the elastic strain field at the grain boundary interacts with the ferro-electric/elastic domain structure, stabilizing (101)/(1-01) rather than (011)/(01-1) type domain walls, which inhibits domain wall motion under applied field and decreases non-linearity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ubiquitin proteasome system (UPS) plays a central role in cellular protein homeostasis through the targeted destruction of damaged/misfolded proteins and regulatory proteins that control critical cellular functions. The UPS comprises a sequential series of enzymatic activities to covalently attach ubiquitin to proteins to target them for degradation through the proteasome. Aberrancies within this system have been associated with transformation and tumourigenesis and thus, the UPS represents an attractive target for the development of anti-cancer therapies. The use of the first-in-class proteasome inhibitor, bortezomib, in the treatment of Plasma Cell Myeloma and Mantle Cell Lymphoma has validated the UPS as a therapeutic target. Following on its success, efforts are focused on the development of second-generation proteasome inhibitors and small molecule inhibitors of other components of the UPS. This review will provide an overview of the UPS and discuss current and novel therapies targeting the UPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Domain microstructures in single crystal lamellae of 88%Pb(Zn1/3Nb2/3)O3-12%PbTiO3 (cut from bulk using focused ion beam milling) have been mapped using both piezoresponse force microscopy and transmission electron microscopy. Dramatic changes from mottled microstructures typical of relaxors to larger scale domains typical of ferroelectrics have been noted. Stresses associated with substrate clamping are suspected as the cause for the transition from short- to long-range polar order, akin to effects induced by cation ordering achieved by thermal quenching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple meso-scale capacitor structures have been made by incorporating thin (300 nm) single crystal lamellae of KTiOPO4 (KTP) between two coplanar Pt electrodes. The influence that either patterned protrusions in the electrodes or focused ion beam milled holes in the KTP have on the nucleation of reverse domains during switching was mapped using piezoresponse force microscopy imaging. The objective was to assess whether or not variations in the magnitude of field enhancement at localised “hot-spots,” caused by such patterning, could be used to both control the exact locations and bias voltages at which nucleation events occurred. It was found that both the patterning of electrodes and the milling of various hole geometries into the KTP could allow controlled sequential injection of domain wall pairs at different bias voltages; this capability could have implications for the design and operation of domain wall electronic devices, such as memristors, in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite difference time domain (FDTD) method has direct applications in musical instrument modeling, simulation of environmental acoustics, room acoustics and sound reproduction paradigms, all of which benefit from auralization. However, rendering binaural impulse responses from simulated
data is not straightforward to accomplish as the calculated pressure at FDTD grid nodes does not contain any directional information. This paper addresses this issue by introducing a spherical array to capture sound pressure on a finite difference grid, and decomposing it into a plane-wave density
function. Binaural impulse responses are then constructed in the spherical harmonics domain by combining the decomposed grid data with free field head-related transfer functions. The effects of designing a spherical array in a Cartesian grid are studied, and emphasis is given to the relationships
between array sampling and the spatial and spectral design parameters of several finite-difference
schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Shared decision making has become an integral part of medical consultation. Research has, however, reported wide differences in individuals' desires to be involved in the decision-making process, and these differences in preferences are likely to be the result of a number of factors including age, education and numeracy.

Objective
To investigate whether patients at genetic risk for cancer had preferences for shared decision making that differed depending on medical domain (general health vs. cancer) and whether decision preferences are linked to numeracy abilities.

Methods
Four hundred and seventy-six women who consented to participate in response to an email sent by a local branch of the U.S.-based Cancer Genetics Network (CGN) to its members. Participants completed the Control Preference Scale, as well as an objective and subjective numeracy scales.

Results
Decision domain (cancer vs. general health) was not associated with women's preferences for involvement in decision making. Objective and subjective numeracy predicted a preference for decision involvement in general, and only objective numeracy was predictive with regard to cancer.

Conclusion
Participants were equally likely to state they wanted to play an active, collaborative or passive role in both medical domains (general and cancer). High-numeracy participants were more likely to express a desire for an active role in general and in case they were diagnosed with cancer.

Practice implications
Health authorities' recommendations to clinicians to include patients in their medical decisions are supported by patients' desires, and clinicians should be cognizant of their patients' preferences as well as their numeracy skills.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the cardiovascular system where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting are limited although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1 based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting, and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A huge variety of proteins are able to form fibrillar structures(1), especially at high protein concentrations. Hence, it is surprising that spider silk proteins can be stored in a soluble form at high concentrations and transformed into extremely stable fibres on demand(2,3). Silk proteins are reminiscent of amphiphilic block copolymers containing stretches of polyalanine and glycine-rich polar elements forming a repetitive core flanked by highly conserved non-repetitive amino-terminal(4,5) and carboxy-terminal(6) domains. The N-terminal domain comprises a secretion signal, but further functions remain unassigned. The C-terminal domain was implicated in the control of solubility and fibre formation(7) initiated by changes in ionic composition(8,9) and mechanical stimuli known to align the repetitive sequence elements and promote beta-sheet formation(10-14). However, despite recent structural data(15), little is known about this remarkable behaviour in molecular detail. Here we present the solution structure of the C-terminal domain of a spider dragline silk protein and provide evidence that the structural state of this domain is essential for controlled switching between the storage and assembly forms of silk proteins. In addition, the C-terminal domain also has a role in the alignment of secondary structural features formed by the repetitive elements in the backbone of spider silk proteins, which is known to be important for the mechanical properties of the fibre.