200 resultados para Renewable Target
Resumo:
A scheme in which carbon ion bunches are accelerated to a high energy and density by a laser pulse (∼10 W/cm) irradiating cone targets is proposed and investigated using particle-in-cell simulations. The laser pulse is focused by the cone and drives forward an ultrathin foil located at the cone's tip. In the course of the work, best results were obtained employing target configurations combining a low-Z cone with a multispecies foil transversely shaped to match the laser intensity profile. © 2014 AIP Publishing LLC.
Resumo:
Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio.
Resumo:
While the benefits of renewable energy are well known and used to influence government policy there are a number of problems which arise from having significant quantities of renewable energies on an electricity grid. The most notable problem stems from their intermittent nature which is often out of phase with the demands of the end users. This requires the development of either efficient energy storage systems, e.g. battery technology, compressed air storage etc. or through the creation of demand side management units which can utilise power quickly for manufacturing operations. Herein a system performing the conversion of synthetic biogas to synthesis gas using wind power and an induction heating system is shown. This approach demonstrates the feasibility of such techniques for stabilising the electricity grid while also providing a robust means of energy storage. This exemplar is also applicable to the production of hydrogen from the steam reforming of natural gas.
Resumo:
Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.
Resumo:
Efforts to rescale governance arrangements to foster sustainable development are rarely simple in their consequences, an out-turn examined in this paper through an analysis of how the governance of renewable energy in the UK has been impacted by the devolution of power to Northern Ireland, Scotland and Wales. Theoretically, attention is given to the ways in which multiple modes of governing renewable energy, and the interactions between modes and objects of governance, together configure the scalar organization of renewable energy governance. Our findings show how the devolved governments have created new, sub-national renewable energy strategies and targets, yet their effectiveness largely depends on UK-wide systems of subsidy. Moreover, shared support for particular objects of governance—large-scale, commercial electricity generation facilities—has driven all the devolved government to centralize and expedite the issuing of consents. This leads to a wider conclusion. While the level at which environmental problems are addressed can affect how they are governed, what key actors believe about the objects of governance can mediate the effects of any rescaling processes.
Resumo:
AIMS: Although earlier reports highlighted a tumor suppressor role for manganese superoxide dismutase (MnSOD), recent evidence indicates increased expression in a variety of human cancers including aggressive breast carcinoma. In the present article, we hypothesized that MnSOD expression is significantly amplified in the aggressive breast carcinoma basal subtype, and targeting MnSOD could be an attractive strategy for enhancing chemosensitivity of this highly aggressive breast cancer subtype.
RESULTS: Using MDA-MB-231 and BT549 as a model of basal breast cancer cell lines, we show that knockdown of MnSOD decreased the colony-forming ability and sensitized the cells to drug-induced cell death, while drug resistance was associated with increased MnSOD expression. In an attempt to develop a clinically relevant approach to down-regulate MnSOD expression in patients with basal breast carcinoma, we employed activation of the peroxisome proliferator-activated receptor gamma (PPARγ) to repress MnSOD expression; PPARγ activation significantly reduced MnSOD expression, increased chemosensitivity, and inhibited tumor growth. Moreover, as a proof of concept for the clinical use of PPARγ agonists to decrease MnSOD expression, biopsies derived from breast cancer patients who had received synthetic PPARγ ligands as anti-diabetic therapy had significantly reduced MnSOD expression. Finally, we provide evidence to implicate peroxynitrite as the mechanism involved in the increased sensitivity to chemotherapy induced by MnSOD repression.
INNOVATION AND CONCLUSION: These data provide evidence to link increased MnSOD expression with the aggressive basal breast cancer, and underscore the judicious use of PPARγ ligands for specifically down-regulating MnSOD to increase the chemosensitivity of this subtype of breast carcinoma.
Resumo:
On the basis of the technique of time reversal (TR), a new method for low dielectric contrast target detection in clutter by adding dispersive delay lines (DDLs) to each element of the TR mirror (TRM) is proposed. When compared with a conventional TR system, the proposed method improves refocusing to a target by reducing the impact of other scatterers in the environment. The proposed method makes it unnecessary to estimate the position of the target and removes the need for subsequent subtraction as traditionally required. Theoretical and numerical simulated results demonstrate the proposed method.
Resumo:
Small-scale, decentralized and community-owned renewable energy is widely acknowledged to be a desirable feature of low carbon futures, but faces a range of challenges in the context of conventional, centralized energy systems. This paper draws on transition frameworks to investigate why the UK has been an inhospitable context for community-owned renewables and assesses whether anything fundamental is changing in this regard. We give particular attention to whether political devolution, the creation of elected governments for Scotland, Wales and Northern Ireland, has affected the trajectory of community renewables. Our analysis notes that devolution has increased political attention to community renewables, including new policy targets and support schemes. However, these initiatives are arguably less important than the persistence of key features of socio-technical regimes: market support systems for renewable energy and land-use planning arrangements that systemically favour major projects and large corporations, and keep community renewables to the margins. There is scope for rolling out hybrid pathways to community renewables, via joint ownership or through community benefit funds, but this still positions community energy as an adjunct to energy pathways dominated by large, corporate generation facilities
Resumo:
In this paper we extend the minimum-cost network flow approach to multi-target tracking, by incorporating a motion model, allowing the tracker to better cope with longterm occlusions and missed detections. In our new method, the tracking problem is solved iteratively: Firstly, an initial tracking solution is found without the help of motion information. Given this initial set of tracklets, the motion at each detection is estimated, and used to refine the tracking solution.
Finally, special edges are added to the tracking graph, allowing a further revised tracking solution to be found, where distant tracklets may be linked based on motion similarity. Our system has been tested on the PETS S2.L1 and Oxford town-center sequences, outperforming the baseline system, and achieving results comparable with the current state of the art.
Resumo:
An improved dual-gas quasi-phase matching (QPM) foil target for high harmonic generation (HHG) is presented. The target can be setup with 12 individual gas inlets each feeding multiple nozzles separated by a minimum distance of 10 μm. Three-dimensional gas density profiles of these jets were measured using a Mach-Zehnder Interferometer. These measurements reveal how the jets influence the density of gas in adjacent jets and how this leads to increased local gas densities. The analysis shows that the gas profiles of the jets are well defined up to a distance of about 300 μm from the orifice. This target design offers experimental flexibility, not only for HHG/QPM investigations, but also for a wide range of experiments due to the large number of possible jet configurations. We demonstrate the application to controlled phase tuning in the extreme ultraviolet using a 1 kHz-10 mJ-30 fs-laser system where interference between two jets in the spectral range from 17 to 30 nm was observed.
Resumo:
The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10(19) W/cm(2). High-resolution X-ray spectroscopy of the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams
Resumo:
Context: Near-Earth asteroid-comet transition object 107P/ (4015) Wilson-Harrington is a possible target of the joint European Space Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA) Marco Polo sample return mission. Physical studies of this object are relevant to this mission, and also to understanding its asteroidal or cometary nature. Aims: Our aim is to obtain significant new constraints on the surface thermal properties of this object. Methods: We present mid-infrared photometry in two filters (16 and 22 μm) obtained with NASA's Spitzer Space Telescope on February 12, 2007, and results from the application of the Near Earth Asteroid Thermal Model (NEATM). We obtained high S/N in two mid-IR bands allowing accurate measurements of its thermal emission. Results: We obtain a well constrained beaming parameter (η = 1.39±0.26) and obtain a diameter and geometric albedo of D = 3.46±0.32 km, and pV = 0.059±0.011. We also obtain similar results when we apply this best-fitting thermal model to single-band mid-IR photometry reported by Campins et al. (1995, P&SS, 43, 733), Kraemer et al. (2005, AJ, 130, 2363) and Reach et al. (2007, Icarus, 191, 298). Conclusions: The albedo of 4015 Wilson-Harrington is low, consistent with those of comet nuclei and primitive C-, P-, D-type asteorids. We establish a rough lower limit for the thermal inertia of W-H of 60 Jm-2s-0.5 K-1 when it is at r = 1 AU, which is slightly over the limit of 30 Jm-2 s-0.5 K-1 derived by Groussin et al. (2009, Icarus, 199, 568) for the thermal inertia of the nucleus of comet 22P/Kopff.
Resumo:
Rosetta is ESA's new comet orbiter mission, launched in March 2004 and currently en route to Jupiter-family comet 67P/Churyumov-Gerasimenko. The probe will rendezvous with the comet in 2014 and remain in orbit around the nucleus for on-going detailed physical and compositional analysis. Pre-encounter observations of the target are important for characterization of the heliocentric light-curve behaviour and the physical properties of the nucleus, information that is critical for mission planning. The nucleus was first characterized using HST observations in 2003 (Lamy et al. 2006) and observed directly in May 2005 by ground based telescopes (Lowry et al. 2006) when it was at 5.6 AU from the Sun. An extensive database of nucleus observations have since been acquired, not only from large ground-based telescopes like the ESO VLT (Tubiana et al. 2008 & 2011), but also from Spitzer (Kelley et al. 2006 & 2009; Lamy et al. 2008).