184 resultados para R-TORSION
Resumo:
MarcoPolo-R is a sample return mission to a primitive Near-Earth Asteroid (NEA) proposed in collaboration with NASA. It will rendezvous with a primitive NEA, scientifically characterize it at multiple scales,and return a unique sample to Earth unaltered by the atmospheric entry process or terrestrial weathering. MarcoPolo-R will return bulk samples (up to 2 kg) from an organic-rich binary asteroid to Earth for laboratory analyses, allowing us to: explore the origin of planetary materials and initial stages of habitable planet formation; identify and characterize the organics and volatiles in a primitive asteroid; understand the unique geomorphology, dynamics and evolution of a binaryNEA. This project is based on the previous Marco Polo mission study,which was selected for the Assessment Phase of the first round of Cosmic Vision. Its scientific rationale was highly ranked by ESA committees andit was not selected only because the estimated cost was higher than theallotted amount for an M class mission. The cost of Marco Polo-R will be reduced to within the ESA medium mission budget by collaboration withAPL (John Hopkins University) and JPL in the NASA program for coordination with ESA's Cosmic Vision Call. The baseline target is a binary asteroid (175706) 1996 FG3, which offers a very efficient operational and technical mission profile. A binary target also providesenhanced science return. The choice of this target will allow newinvestigations to be performed more easily than at a single object, andalso enables investigations of the fascinating geology and geophysics ofasteroids that are impossible at a single object. Several launch windows have been identified in the time-span 2020-2024. A number of otherpossible primitive single targets of high scientific interest have beenidentified covering a wide range of possible launch dates. The baselinemission scenario of Marco Polo-R to 1996 FG3 is as follows: a singleprimary spacecraft provided by ESA, carrying the Earth Re-entry Capsule, sample acquisition and transfer system provided by NASA, will be launched by a Soyuz-Fregat rocket from Kourou into GTO and using two space segment stages. Two similar missions with two launch windows, in 2021 and 2022 and for both sample return in 2029 (with mission durationof 7 and 8 years), have been defined. Earlier or later launches, in 2020 or 2024, also offer good opportunities. All manoeuvres are carried out by a chemical propulsion system. MarcoPolo-R takes advantage of three industrial studies completed as part of the previous Marco Polo mission (see ESA/SRE (2009)3, Marco Polo Yellow Book) and of the expertise of the consortium led by Dr. A.F. Cheng (PI of the NASA NEAR Shoemaker mission) of the JHU-APL, including JPL, NASA ARC, NASA LaRC, and MIT.
Resumo:
We have developed a two-electron outer region for use within R-matrix theory to describe double ionisation processes. The capability of this method is demonstrated for single-photon double ionisation of He in the photon energy region between 80 eV to 180 eV. The cross sections are in agreement with established data. The extended RMT method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionisation processes involving an intermediate He+ state with n=2.
Resumo:
In this paper we present photoionization cross sections for the lowest five states of O-like S IX (1s(2)2s(2)2p(4) P-3(0,1,2), D-1(2), S-1(0)). The relativistic Breit-Pauli R-matrix codes were utilized including all terms of the 2s(2)2p(3), 2s2p(4), 2p(5), 2s(2)2p(2)3s, 3p, 3d and 2s2p(3)3s, 3p, 3d configurations in the expansion of the collision wavefunction for S X. It was also found that to achieve convergence of the low-lying energy separations of the target levels, an additional 21 configuration functions needed to be included in the configuration interaction expansion, incorporating two-electron excitations from the 2s and 2p shells to the 3s, 3p and 3d shells. The present work thus constitutes the most sophisticated photoionization evaluation for ground and metastable levels of the S IX ion. Direct comparisons have been made with the only available data found on the OPEN-ADAS database between level resolved contributions of the spectrum. This comparison for the background cross section exhibits excellent agreement at all photon energies for each partial photoionization cross section contribution investigated. Finally, the autoionizing bound states arising from numerous open channels have also been investigated and identified using the QB approach, a procedure for analyzing resonances in atomic and molecular collision theory which exploits the analytic properties of R-matrix theory. Major Rydberg resonance series are also presented and tabulated for the dominant linewidths considered.
Resumo:
A convenient asymmetric total synthesis of the potent HIF-1 inhibitory antitumor natural product, (−)- or (+)-(8R)-mycothiazole (1), is described. Not only does our synthesis confirm the 2006 structural reassignment made by Crews (Crews, P., et al. J. Nat. Prod. 2006, 69, 145), it revises the [α]D data previously reported for this molecule in MeOH from −13.7° to +42.3°. The newly developed route to (8R)-1 sets the C(8)–OH stereocenter via Sharpless AE/2,3-epoxy alcohol reductive ring opening and utilizes two Baldwin–Lee CsF/cat. CuI Stille cross-coupling reactions with vinylstannanes 8 and 3 to efficiently elaborate the C(1)–C(4) and C(14)–C(18) sectors.
Resumo:
Recent studies predict elevated and accelerating rates of species extinctions over the 21st century, due to climate change and habitat loss. Considering that such primary species loss may initiate cascades of secondary extinctions and push systems towards critical tipping points, we urgently need to increase our understanding of if certain sequences of species extinctions can be expected to be more devastating than others Most theoretical studies addressing this question have used a topological (non-dynamical) approach to analyse the probability that food webs will collapse, below a fixed threshold value in species richness, when subjected to different sequences of species loss. Typically, these studies have neither considered the possibility of dynamical responses of species, nor that conclusions may depend on the value of the collapse threshold. Here we analyse how sensitive conclusions on the importance of different species are to the threshold value of food web collapse. Using dynamical simulations, where we expose model food webs to a range of extinction sequences, we evaluate the reliability of the most frequently used index, R<inf>50</inf>, as a measure of food web robustness. In general, we find that R<inf>50</inf> is a reliable measure and that identification of destructive deletion sequences is fairly robust, within a moderate range of collapse thresholds. At the same time, however, focusing on R<inf>50</inf> only hides a lot of interesting information on the disassembly process and can, in some cases, lead to incorrect conclusions on the relative importance of species in food webs.
Resumo:
Authenticated encryption algorithms protect both the confidentiality and integrity of messages in a single processing pass. We show how to utilize the L◦P ◦S transform of the Russian GOST R 34.11-2012 standard hash “Streebog” to build an efficient, lightweight algorithm for Authenticated Encryption with Associated Data (AEAD) via the Sponge construction. The proposed algorithm “StriBob” has attractive security properties, is faster than the Streebog hash alone, twice as fast as the GOST 28147-89 encryption algorithm, and requires only a modest amount of running-time memory. StriBob is a Round 1 candidate in the CAESAR competition.