174 resultados para Plant regulator
Resumo:
Ribosome biogenesis is a fundamental cellular process which is tightly regulated in normal cells. A number of tumour suppressors and oncogenes could affect the production of ribosomes at different levels and an upregulation could lead to increased protein biosynthesis which is one of the characteristic features of all cancer cells. Ribosome biogenesis is a very complex process which requires coordinated transcription by all three nucleolar polymerases and the first event in this process is synthesis of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I). Importantly, recent data has pictured rRNA transcription as a key regulator of whole ribosome biogenesis and therefore makes it a valid and very attractive target for anticancer therapy, as well as a perspective biomarker. However, at the moment there is only one known specific inhibitor of Pol I transcription (at stage one of clinical trials) and this makes it very difficult for the development of drugs which would target rRNA transcription and consequently ribosome biogenesis. We have recently discovered that antitumor alkaloid ellipticine (isolated in 1959 from the plant species Ochrosia) is a potent inhibitor of Pol I transcription (both in vitro and in vivo). Ellipticine and its derivatives are known as efficient topoisomerase II inhibitors and inhibitors of some kinases, however we have shown that these inhibitory activities and the ability of ellipticine to repress Pol I activity are unrelated. Moreover, our preliminary data suggests that ellipticine specifically targets Pol I transcription and it has no effect on transcription by Pol II and Pol III at the same time scale. The possible mechanisms of inhibition of Pol I transcription by ellipticines will be discussed.
Resumo:
Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio.
Resumo:
Uses of plants extracts are found to be more advantageous over chemical, physical and microbial (bacterial, fungal, algal) methods for silver nanoparticles (AgNPs) synthesis. In phytonanosynthesis, biochemical diversity of plant extract, non-pathogenicity, low cost and flexibility in reaction parameters are accounted for high rate of AgNPs production with different shape, size and applications. At the same time, care has to be taken to select suitable phytofactory for AgNPs synthesis based on certain parameters such as easy availability, large-scale nanosynthesis potential and non-toxic nature of plant extract. This review focuses on synthesis of AgNPs with particular emphasis on biological synthesis using plant extracts. Some points have been given on selection of plant extract for AgNPs synthesis and case studies on AgNPs synthesis using different plant extracts. Reaction parameters contributing to higher yield of nanoparticles are presented here. Synthesis mechanisms and overview of present and future applications of plant-extract-synthesized AgNPs are also discussed here. Limitations associated with use of AgNPs are summarised in the present review.
The not-so-Irish spurge: Euphorbia hyberna (Euphorbiaceae) and the Littletonian plant ‘steeplechase’
Resumo:
The disjunct distributions of the Lusitanian flora, which are found only in south-west Ireland and northern Iberia, and are generally absent from intervening regions, have been of great interest to biogeographers. There has been much debate as to whether Irish populations represent relicts that survived the Last Glacial Maximum (LGM; approximately 21 kya), or whether they recolonized from southern refugia subsequent to the retreat of the ice and, if so, whether this occurred directly (i.e. the result of long distance dispersal) or successively (i.e. in the manner of a ‘steeplechase’, with the English Channel and Irish Sea representing successive ‘water-jumps’ that have to be successfully crossed). In the present study, we used a combined palaeodistribution modelling and phylogeographical approach to determine the glacial history of the Irish spurge, Euphorbia hyberna, the sole member of the Lusitanian flora that is also considered to occur naturally in south-western England. Our findings suggest that the species persisted through the LGM in several southern refugia, and that northern populations are the result of successive recolonization of Britain and Ireland during the postglacial Littletonian warm stage, akin to the ‘steeplechase’ hypothesis.
Resumo:
Microbial interactions depend on a range of biotic and environmental variables, and are both dynamic and unpredictable. For some purposes, and under defined conditions, it is nevertheless imperative to evaluate the inhibitory efficacy of microbes, such as those with potential as biocontrol agents. We selected six, phylogenetically diverse microbes to determine their ability to inhibit the ascomycete Fusarium
coeruleum, a soil-dwelling pathogen of potato tubers that causes the storage disease dry rot. Interaction assays, where colony development was quantified (for both fungal pathogen and potential control agents), were therefore carried out on solid media. The key parameters that contributed to, and were indicative of, inhibitory efficacy were identified as: fungal growth-rates (i) prior to contact with the biocontrol
agent and (ii) if/once contact with the biocontrol agent was established (i.e. in the zone of mixed
culture), and (iii) the ultimate distance traveled by the fungal mycelium. It was clear that there was no correlation between zones of fungal inhibition and the overall reduction in the extent of fungal colony development. An inhibition coefficient was devised which incorporated the potential contributions of distal inhibition of fungal growth-rate; prevention of mycelium development in the vicinity of the biocontrol
agent; and ability to inhibit plant-pathogen growth-rate in the zone of mixed culture (in a ratio of 2:2:1). The values derived were 84.2 for Bacillus subtilis (QST 713), 74.0 for Bacillus sp. (JC12GB42), 30.7 for Pichia anomala (J121), 19.3 for Pantoea agglomerans (JC12GB34), 13.9 for Pantoea sp. (S09:T:12), and
21.9 (indicating a promotion of fungal growth) for bacterial strain (JC12GB54). This inhibition coefficient, with a theoretical maximum of 100, was consistent with the extent of F. coeruleum-colony development (i.e. area, in cm2) and assays of these biocontrol agents carried out previously against Fusarium
spp., and other fungi. These findings are discussed in relation to the dynamics and inherent complexity of natural ecosystems, and the need to adapt models for use under specific sets of conditions.
Resumo:
Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69-91% and 4-27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources.
Resumo:
Manganese (Mn) is an essential nutrient required for plant growth, in particular in the process of photosynthesis. Plant performance is influenced by various environmental stresses including contrasting temperatures, light or nutrient deficiencies. The molecular responses of plants exposed to such stress factors in combination are largely unknown.
Screening of 108 Arabidopsis thaliana (Arabidopsis) accessions for reduced photosynthetic performance at chilling temperatures was performed and one accession (Hog) was isolated. Using genetic and molecular approaches, the molecular basis of this particular response to temperature (GxE interaction) was identified.
Hog showed an induction of a severe leaf chlorosis and impaired growth after transfer to lower temperatures. We demonstrated that this response was dependent on the nutrient content of the soil. Genetic mapping and complementation identified NRAMP1 as the causal gene. Chlorotic phenotype was associated with a histidine to tyrosine (H239Y) substitution in the allele of Hog NRAMP1. This led to lethality when Hog seedlings were directly grown at 4 degrees C.
Chemical complementation and hydroponic culture experiments showed that Mn deficiency was the major cause of this GxE interaction. For the first time, the NRAMP-specific highly conserved histidine was shown to be crucial for plant performance.
Resumo:
Milling of plant and soil material in plastic tubes, such as microcentrifuge tubes, over-estimates carbon (C) and under-estimates nitrogen (N) concentrations due to the introduction of polypropylene into milled samples, as identified using Fourier-transform infra-red spectroscopy.
This study compares C and N concentrations of roots and soil milled in microcentrifuge tubes versus stainless steel containers, demonstrating that a longer milling time, greater milling intensity, smaller sample size and inclusion of abrasive sample material all increase polypropylene contamination from plastic tubes leading to overestimation of C concentrations by up to 8 % (0.08 g g(-1)).
Erroneous estimations of C and N, and other analytes, must be assumed after milling in plastic tubes and milling methods should be adapted to minimise such error.
Resumo:
The study assessed the effect of heating vermiculites on extractability of phosphorus, iron, zinc and manganese with respect to their potential agricultural use. Of these elements, phosphorus was from apatite and monazite that occur as accessory minerals in vermiculites. Vermiculites were heated at 15-800 degrees C and digested by acetic acid for extracting phosphorus and diethylene triamine pentaacetic acid (DTPA) for extracting zinc, iron and manganese. Phosphorus in the extract was analysed by a flow injection method while zinc, iron and manganese were measured by atomic absorption spectrometry. The results showed that heating vermiculites to 400 C enhanced extractability of phosphorus from apatite and monazite to a level of 335 mg kg(-1). Further heating to 800 degrees C reduced extractable phosphorus to less than 75 mg kg(-1). Maximum extractable zinc, iron and manganese found were 2.7, 19.1 and 22.9 mg kg(-1), respectively, values that are beneficial and tolerable by most plants. Thus, it was concluded that heating vermiculites to
Resumo:
Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and establishment. As these factors operate at different spatial scales, we asked: Do the environmental factors known to determine community assembly at broad scales operate at fine scales (few meters)? How much do these factors account for community variation at fine scales? In which way do biotic and abiotic interactions drive changes in species composition? We surveyed the plant community within a dry grassland along a very steep gradient of soil characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three replicated macroplots of 15x15, 12x12 and 12x12 meters in extent. Soil samples were taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning to assess the effect of these variables on plant composition and statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random patterns in species co-occurrence using randomization schemes that account for patterns expected under species interactions. At a fine spatial scale, environmental factors explained 18% of variation when controlling for spatial autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14% variation. Null model analysis showed that species spatially segregated in a non-random way and these spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our grassland study suggests that environmental factors found to be directly relevant in broad scale studies are present also at small scales, but are supplemented by spatial processes and more direct interactions like competition.