164 resultados para Oxidative metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mutant strain (UV4) of the soil bacterium Pseudomonas putida, containing toluene dioxygenase, has been used in the metabolic oxidation of 1,2-dihydrobenzocyclobutene 12 dagger and the related substrates 1,2-dihydrobenzocyclobuten-1-ol 13 and biphenylene 33. Stable angular cis-monohydrodiol metabolites (1R,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2 7, (1S,2S,8S)-bicyclo[4.2.0]octa-3,5-diene-1,2,8-triol 8 and biphenylene-cis-1,8b-diol 9, isolated from each of these substrates, have been structurally and stereochemically assigned. The structure, enantiopurity and absolute configuration of the other cis-diol metabolites, (2R,3S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 and cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16, and the benzylic oxidation bioproducts, 1,2-dihydrobenzocyclobuten-1-ol 13, 1,2-dihydrobenzocyclobuten-1-one 15 and 2-hydroxy-1,2-dihydrobenzocyclobuten-1-one 17, obtained from 1,2-dihydrobenzocyclobutene and 1,2-dihydrobenzocyclobuten-1-ol, have been determined with the aid of chiral stationary-phase HPLC, NMR and CD spectroscopy, and stereochemical correlation. X-Ray crystallographic methods have been used in the determination of absolute configuration of the di-camphanates 27 (from diol 7) and 32 (from diol 9), and the di-MTPA ester 29 (from diol 14) of the corresponding cis-diol metabolites. The metabolic sequence involved in the formation of bioproducts derived from 1,2-dihydrobenzocyclobutene 12 has been investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: The aim of this study was to examine if erythropoietin (EPO) has the potential to act as a biological antioxidant and determine the underlying mechanisms.

Methods: The rate at which its recombinant form (rHuEPO) reacts with hydroxyl (HO center dot), 2,2-diphenyl-1-picrylhydrazyl (DPPH center dot) and peroxyl (ROO center dot) radicals was evaluated in-vitro. The relationship between the erythopoietic and oxidative-nitrosative stress response to poikilocapneic hypoxia was determined separately in-vivo by sampling arterial blood from eleven males in normoxia and following 12 h exposure to 13% oxygen. Electron paramagnetic resonance spectroscopy, ELISA and ozone-based chemiluminescence were employed for direct detection of ascorbate (A(center dot-)) and N-tert-butyl-a-phenylnitrone spin-trapped alkoxyl (PBN-OR) radicals, 3-nitrotyrosine (3-NT) and nitrite (NO2-).

Results: We found rHuEPO to be a potent scavenger of HO center dot (k(r) = 1.03-1.66 x 10(11) M-1 s(-1)) with the capacity to inhibit Fenton chemistry through catalytic iron chelation. Its ability to scavenge DPPH. and ROO center dot was also superior compared to other more conventional antioxidants. Hypoxia was associated with a rise in arterial EPO and free radical-mediated reduction in nitric oxide, indicative of oxidative-nitrosative stress. The latter was confirmed by an increased systemic formation of A(center dot-), PBN-OR, 3-NT and corresponding loss of NO2- (P <0.05 vs. normoxia). The erythropoietic and oxidative-nitrosative stress responses were consistently related (r =-0.52 to 0.68, P <0.05).

Conclusion: These findings demonstrate that EPO has the capacity to act as a biological antioxidant and provide a mechanistic basis for its reported cytoprotective benefits within the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lycopene can exert antioxidant effects against peripheral and cellular oxidative stress and may be associated with reduced diabetic risk. Conversely, exercise-induced free radicals are thought to underpin many of the desirable whole-body adaptations following training and the use of antioxidants within the exercise model remains debatable. PURPOSE: To investigate the effect of lycopene supplementation on oxidative stress and glucose homeostasis following acute aerobic exercise. METHOD: Twenty-eight (n=28) apparently healthy male volunteers were recruited (age 24 ± 4 years; weight 78 ± 10 kg; height 178 ± 8 cm; 2max 40 ± 7 ml·kg-1 ·min-1 ) in a randomised, single blind, placebo-controlled study. Participants were required to attend the Laboratory on two occasions: prior to and following 6 weeks of supplementation of either 10mg lycopene (LG; n=15) or placebo (PG; n=13) followed by a bout of acute exercise for one hour at 65% 2max. Exogenous glucose oxidation was then measured on an isotope ratio mass spectrometer in a sub-group of participants (n=14) following exercise, by administration of a standard oral glucose tolerance test (OGTT; 75g glucose). Venous blood samples were drawn for measurement of oxidative stress parameters, plasma glucose and insulin. RESULTS: Plasma lycopene increased in LG only (0.01 ± 0.004 vs.0.02 ± 0.007 µmol/L; P <0.05) following supplementation and remained elevated post exercise compared to PG (0.01 ± 0.004 vs. 0.02 ± 0.009 µmol/L; P <0.05). There were no changes in other markers of oxidative stress (SOD, LOOHs, F2 ISP and Alkoxyl radical) either between or within the trials, (P >0.05, respectively). A main effect for an increase in insulin was observed two hours post OGTT in the sub-groups (Pooled data, P <0.05) but trends in the HOMA scores were evident with a 57% increase for LG (2.20 ± 1.84 vs. 5.14 ± 2.5; P >0.05) and an 11% decrease for PG (2.17 ± 1.06 vs. 1.94 ± 1.53; P >0.05). No change in plasma glucose was detected at any point, or after the OGTT (P >0.05). CONCLUSION: In healthy males, lycopene supplementation had no effect on post exercise levels of ROS or markers of lipid peroxidation, despite an increase in plasma lycopene. However, lycopene supplementation may affect post exercise insulin sensitivity in response to glucose consumption, but further parallel research is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research detailing the normal vascular adaptions to high altitude is minimal and often confounded by pathology (e.g. chronic mountain sickness) and methodological issues. We examined vascular function and structure in: (1) healthy lowlanders during acute hypoxia and prolonged (∼2 weeks) exposure to high altitude, and (2) high-altitude natives at 5050 m (highlanders). In 12 healthy lowlanders (aged 32 ± 7 years) and 12 highlanders (Sherpa; 33 ± 14 years) we assessed brachial endothelium-dependent flow-mediated dilatation (FMD), endothelium-independent dilatation (via glyceryl trinitrate; GTN), common carotid intima–media thickness (CIMT) and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid hydroperoxides, LOOH), nitrite (NO2) and lipid soluble antioxidants were also obtained at rest. In lowlanders, measurements were performed at sea level (334 m) and between days 3–4 (acute high altitude) and 12–14 (chronic high altitude) following arrival to 5050 m. Highlanders were assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD (7.9 ± 0.4 vs. 6.8 ± 0.4%; P = 0.004) and GTN-induced dilatation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P = 0.006), and raised central PWV (6.0 ± 0.2vs. 6.6 ± 0.3 m s−1P = 0.001). These changes persisted at days 12–14, and after allometrically scaling FMD to adjust for altered baseline diameter. Compared to lowlanders at sea level and high altitude, highlanders had a lower carotid wall:lumen ratio (∼19%, P ≤ 0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and NO2 increased with high altitude in lowlanders, only LOOH correlated with the reduction in GTN-induced dilatation evident during acute (n = 11, r = −0.53) and chronic (n = 7, r = −0.69; P ≤ 0.01) exposure to 5050 m. In a follow-up, placebo-controlled experiment (n = 11 healthy lowlanders) conducted in a normobaric hypoxic chamber (inspired O2 fraction () = 0.11; 6 h), a sustained reduction in FMD was evident within 1 h of hypoxic exposure when compared to normoxic baseline (5.7 ± 1.6 vs. 8.0 ±1.3%; P < 0.01); this decline in FMD was largely reversed following α1-adrenoreceptor blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in vascular function, which was mediated partially via oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure neither intensifies nor attenuates the impairments seen with short-term exposure, chronic high-altitude exposure appears to be associated with arterial remodelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galactosemia, an inborn error of galactose metabolism, was first described in the 1900s by von Ruess. The subsequent 100years has seen considerable progress in understanding the underlying genetics and biochemistry of this condition. Initial studies concentrated on increasing the understanding of the clinical manifestations of the disease. However, Leloir's discovery of the pathway of galactose catabolism in the 1940s and 1950s enabled other scientists, notably Kalckar, to link the disease to a specific enzymatic step in the pathway. Kalckar's work established that defects in galactose 1-phosphate uridylyltransferase (GALT) were responsible for the majority of cases of galactosemia. However, over the next three decades it became clear that there were two other forms of galactosemia: type II resulting from deficiencies in galactokinase (GALK1) and type III where the affected enzyme is UDP-galactose 4'-epimerase (GALE). From the 1970s, molecular biology approaches were applied to galactosemia. The chromosomal locations and DNA sequences of the three genes were determined. These studies enabled modern biochemical studies. Structures of the proteins have been determined and biochemical studies have shown that enzymatic impairment often results from misfolding and consequent protein instability. Cellular and model organism studies have demonstrated that reduced GALT or GALE activity results in increased oxidative stress. Thus, after a century of progress, it is possible to conceive of improved therapies including drugs to manipulate the pathway to reduce potentially toxic intermediates, antioxidants to reduce the oxidative stress of cells or use of "pharmacological chaperones" to stabilise the affected proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.

Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.

Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.

Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevation of arsenic levels in soils causes considerable concern with respect to plant uptake and subsequent entry into wildlife and human food chains, Arsenic speciation in the environment is complex, existing in both inorganic and organic forms, with interconversion between species regulated by biotic and abiotic processes. To understand and manage the risks posed by soil arsenic it is essential to know how arsenic is taken up by the roots and metabolized within plants. Some plant species exhibit phenotypic variation in response to arsenic species, which helps us to understand the toxicity of arsenic and the way in which plants have evolved arsenic resistances. This knowledge, for example, could be used produce plant cultivars that are more arsenic resistant or that have reduced arsenic uptake. This review synthesizes current knowledge on arsenic uptake, metabolism and toxicity for arsenic resistant and nonresistant plants, including the recently discovered phenomenon of arsenic hyperaccumulation in certain fern species. The reasons why plants accumulate and metabolize arsenic are considered in an evolutionary context. © New Phytologist.